Worksheet – Mostly Solid / Solid Fencing – Wind Loading Only

Site Location:

Customer:						
Site and Geometrical Variables						
IBC ASCE 7 Risk Category Frost Depth ft						
Basic Wind Speed, V _w = mph						
Wind Pressure, q _w = psf						
Exposure Category Topographical Factor, K _{zt} =						
Site Elevation, $Z_e = $ ft Elevation Factor, $K_e = $						
Height of fence, h = ft Gap at bottom of fence, g = ft (zero if no gap)						
Height of fencing material, s = h - g = ft						
Velocity Pressure Exposure Coefficient, K _z =						

Wind & Axial Loading

Fence Run #_____ Length of Fence, B = _____ ft

Post spacing, L = ____ ft

Post Type: Line Posts () Post near end or corner ()

Solidity Ratio, $\varepsilon =$

Inverted Fence Opening Reduction Factor, R_{1w} = _____

Case C Reduction Factor, R_{2w} = _____ Return Corner Reduction Factor, R_{3w} = _____

Force Height Adjustment Factor, F_{hw} = _____ Wind Force Coefficient, C_{fw} = _____

Wind area tributary to the post, $A_w = \epsilon$ s $L = \underbrace{}_{\epsilon} \times \underbrace{}_{s} \times \underbrace{}_{s} = \underbrace{}_{s} \operatorname{ft}^2$

Dead Load of fencing materials, D_m _____ psf

Lateral and Axial Forces for Wind Loading

Wind Force to the post, $f_w = q_w K_z K_{zt} K_e R_{1w} F_{hw} C_{fw} A_w$

$$f_w = \underbrace{\hspace{1cm}}_{q_w} \times \underbrace{\hspace{1cm}}_{K_z} \times \underbrace{\hspace{1cm}}_{K_{zt}} \times \underbrace{\hspace{1cm}}_{K_e} \times \underbrace{\hspace{1cm}}_{R_{1w}} \times \underbrace{\hspace{1cm}}_{F_{hw}} \times \underbrace{\hspace{1cm}}_{C_{fw}} \times \underbrace{\hspace{1cm}}_{A_w} = \underbrace{\hspace{1cm}}_{f_w} \text{Ibs}$$

The Axial Force supported by the post, $p_w = D_w s L$

$$p_w = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \text{lbs}$$

$$D_m \qquad s \qquad L \qquad p_w$$

 $5 \times p_w =$ _____ lbs (used for stability check)

Post Selection

Using the desired post size and the Fence Height, h, look through the post charts for post types that have F_a values larger than the f_w value, and P_a values larger than the p_w value. If the post has an * next to the P_a value, only use it if the P_a value is $\geq 5 \times p_w$ due to stability requirements.

Put in the size, post type, weight per foot, D_p and fence height, h and calculate p_w ' to include the weight of the post. Add any additional weight if needed.

f_w / F_a is the bending strength ratio for Wind.

pw' / Pa is the axial strength ratio for Wind

If the sum of the bending strength and axial strength ratios for both Wind and Wind & Ice loading are ≤ 1.0, the post is acceptable.

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$					
				p _w 1 =					
Wind									
f _w ' = =									
F _a =		P _a =			F _a P _a				

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$				
				p _w ' =				
Wind								
f _w ' = = <u>f_w' + p_w' = =</u>								
F _a =			Pa =	_	F_a P_a			

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$					
				p _w ' =					
Wind									
f _w ' =					f _w ' p _w ' _ =				
F _a =			P _a =		Fa Pa				

Design Footing Depth, D = ft

Footing Diameter, b = ft

Lateral Bearing Pressure per foot of depth, S = psf / ft per geotechnical analysis or table 1806.2

Maximum Wind Force, $P = f_w =$ _____ lbs Post Height, h =_____ ft

Modifier for Isolated Posts. M = 2.0

per IBC §1086.3.4

Allowable Lateral Soil Bearing Pressure for non-constrained footings, S₁ = 1/3 D S M

$$S_1 = \frac{1}{3} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times 2.0 = \underline{\hspace{1cm}} \text{psf} \quad \text{per IBC } \S 1807.3.2.1$$

Soil Bearing Factor, $A = 2.34 P/(S_1 b)$ per IBC §1807.3.2.1

$$A = 2.34 \times _{P} \div (_{S_1} \times _{b}) = _{A}$$

Minimum Depth, d = $\frac{1}{2}$ A $\left(1 + \sqrt{1 + \frac{4.36 \frac{1}{2}h}{A}}\right)$ per Eq. 18-1, modified for fencing

$$d = \frac{1}{2} \times \underline{\qquad} \times (1 + \sqrt{1 + (4.36 \times \frac{1}{2} \times \underline{\qquad} \div \underline{\qquad})}) = \underline{\qquad} ft$$

Area of the bottom of the footing, $A_f = \pi (\frac{1}{2}b)^2 = 3.14 \times (\frac{1}{2} \times \underline{\hspace{1cm}})^2 = \underline{\hspace{1cm}} ft^2$

Footing Volume,
$$V = A_f D = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad} ft^3$$

Weight of footing, $D_f = 150 \text{ V} = 150 \text{ x} = 150 \text{ J} = 150 \text{ m}$ lbs (Typical Concrete weight is 150 lbs / ft³)

Axial Dead Load, $D_{max} = D_f + p_w$

$$D_{max} = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}} lbs$$

Maximum Vertical Foundation Pressure, $S_y = \underline{\hspace{1cm}}$ psf per geotechnical analysis or table 1806.2

Maximum Axial Pressure on the soil, $s_y = D_{max} / A_f = \underline{\qquad} \div \underline{\qquad} = \underline{\qquad} pst$

Actual to Allowable Soil Strength Ratio, s_y / S_y = ____ \div ___ = ___ \le 1.0 is OK

s_y / S_y must be less than 1.0. If not, start over with a larger footing diameter, b