Example 2 – hand calculations – solid fencing for wind loading – no ice loading												
6' mostly solid wooden fence no gap at the bottom 96' long 8' post spacing Elevation - 1,086 ft												
5-1/4" wooden pickets w/ ¼" gaps 5-1/2" picket spacing Solidity Ratio, $\epsilon = 5.5 / 5.25 = 0.95$												
Site Location – Phoenix, AZ	Exposure B (residential)	Risk Ca	tegory I	Flat ground								

ARIZONA

2018 International Building Code with amendments (at the time of this writing) For IBC 2018 & 2021 ASCE 7-16 use

https://ascehazardtool.org/

Standard:	ASCE/SEI 7-16	q _w Va	alues
Diek		V _w (mph)	q _w (psf)
Cotogonic	1	85	8.02
category.		90	8.99
Soil Class:		95	10.02
		100	11.10
Wind		105	12.24
wind		110	13.43
05 Vmnh		115	14.68
90 viripri		120	15.98
		125	17.34
Ice		130	18.75
0 in		135	20.23
u in.		140	21.75

K _z Values for ASCE 7-10 & 7-16											
Fence Exposure Class											
Height, h (ft)	В	С	D								
0-15	0.57	0.85	1.03								
16	0.59	0.86	1.04								
17	0.60	0.87	1.05								
18	0.61	0.88	1.06								
19	0.61	0.89	1.07								
20	0.62	0.90	1.08								

Inverted Fence Opening Reduction Factor, R1

K _e Values										
Site	ASCE									
Elevation	7-16 & 7-22	7-10								
z _e (ft)	K _e	K _e = 1.0								
0	1.00	1.00								
500	0.98	1.00								
1,000	0.96	1.00								
1,500	0.95	1.00								
2,000	0.93	1.00								
2,500	0.91	1.00								
3,000	0.90	1.00								
3 <mark>,</mark> 500	0.88	1.00								
4,000	0.87	1.00								
4,500	0.85	1.00								
5,000	0.84	1.00								

ε or ε'	R ₁		ε or ε'	R ₁
0.71	1.19		0.86	1.06
0.72	1.17		0.87	1.05
0.73	1.16		0.88	1.04
0.74	1.15		0.89	1.04
0.75	1.14		0.90	1.03
0.76	1.13		0.91	1.03
0.77	1.12		0.92	1.02
0.78	1.12		0.93	1.02
0.79	1.11		0.94	1.01
0.80	1.10		0.95	1.01
0.81	1.09		0.96	1.01
0.82	1.08		0.97	1.01
0.83	1.08		0.98	1.00
0.84	1.07		0.99	1.00
0.85	1.06		1.00	1.00

$$\begin{split} R_{1w} &= 1 / (1 - (1 - \epsilon)^{1.5}) \\ R_{1i} &= 1 / (1 - (1 - \epsilon')^{1.5}) \end{split}$$

$K_{zt} = 1.0$ for flat ground	
See ASEC 7 Fig. 26.8-1 to calculate K	zt

values for site locations on hills or escarpments

D_w = 1.5 psf

 $F_{hw} = 1.1$

Case C Reduct	tion Factor, R ₂				
s/h	R ₂				
1.000	0.80				
0.975	0.83				
0.950	0.85				
0.925	0.88				
0.900	0.90				
0.875	0.93				
0.850	0.95				
0.825	0.98				
≥ 0.800	1.00				
$R_2 = (1.8 -$	s/h) ≤ 1.0				

Force Height Adjustment Factor, F _h									
s/h	F _h	Notes							
1.000	1.100	Per Solid Wall Table, Note 3							
0.975	1.025								
0.950	1.050								
0.925	1.075								
0.900	1.100	5 - 2 o/b							
0.875	1.125	$F_h = 2 - S/h$							
0.850	1.150								
0.825	1.175								
0.800	1.200								

Fence Length, B = 96 ft

Fencing Height, s = 6'

Aspect Ratio B/s = 16

Case C controls wost case post

	C _f values - Solid / Mostly Solid Fencing - Case C - Posts near ends and corners													
Wind			Aspect Ratio, B/s											
Region	13	16	16 19 22 25 28 31 34 37 40 ≥4											
0 to s	4.00*	4.03*	4.06*	4.09*	4.12*	4.15*	4.18*	4.21*	4.24*	4.27*	4.30*			
s to 2s	2.60	2.60	2.59	2.59	2.58	2.58	2.57	2.57	2.56	2.56	2.55			
2s to 3s	2.00	2.00	1.99	1.99	1.98	1.98	1.97	1.97	1.96	1.96	1.95			
3s to 4s	1.50	1.54	1.57	1.61	1.64	1.68	1.71	1.75	1.78	1.82	1.85			
4s to 5s	1.35	1.40	1.45	1.50	1.55	1.60	1.65	1.70	1.75	1.80	1.85			
5s to 10s	0.90	0.92	0.94	0.96	0.98	1.00	1.02	1.04	1.06	1.08	1.10			
>10s	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55			

For solid / mostly solid fencing, the post with the highest wind loading is typically the 1st post in from the end of the longest fence run. Return corners reduce the forces so for complicated fencing, multiple checks may need to be done to find the worst case post. In this case, a straight fence with no corners, the posts next to the end posts have the highest loading. End posts get higer wind pressures, but only half the wind area.

Worksheet	– Mostly Solid / Soli	d Fencing – Wind Loading Only	FenceDesign.com
Site Location:	Phoenix, AZ		
Customer:			
	Site	and Geometrical Variables	
IBC_2018	ASCE 7- <u>16</u>	Risk Category_I	Frost Depth <u>1.0</u> ft
Basic Wind Spe	ed, V _w = <u>95</u> mph		
Wind Pressure,	q _w = <u>10.02</u> psf		
Exposure Categ	ory	Topographical Factor, $K_{zt} = 1$.0
Site Elevation, 2	Z _e = <u>1,086</u> ft	Elevation Factor, $K_e = 0.96$	
Height of fence	, n = <u>o</u> ft	Gap at bottom of fence, $g = -\frac{1}{2}$	·π (zero if no gap)
Height of fencir	ng material s = h - g -	= 6 ft	
		IL	
Velocity Pressu	re Exposure Coefficie	nt, K _z = <u>0.57</u>	

Wind & Axial Loading

Fence Run $\#_{1}^{1}$ Length of Fence, B = <u>96</u> ftPost spacing, L = <u>8</u> ft Post Type: Line Posts () Post near end or corner (X) Inverted Fence Opening Reduction Factor, $R_{1w} = 1.01$ Solidity Ratio, $\varepsilon = 0.95$ Case C Reduction Factor, $R_{2w} = \frac{0.8}{1.0}$ Return Corner Reduction Factor, $R_{3w} = \frac{1.0}{1.0}$ Force Height Adjustment Factor, $F_{hw} = 1.1$ Wind Force Coefficient, $C_{fw} = 2.55$

Wind area tributary to the post, $A_w = \varepsilon s L = \frac{0.95}{\varepsilon} \times \frac{6 \text{ ft}}{s} \times \frac{8 \text{ ft}}{L} = \frac{45.6}{A_w} \text{ ft}^2$

Dead Load of fencing materials, $D_m \frac{2.2}{2}$ psf weight of pickets and assuming two 2 x 4 rails

Lateral and Axial Forces for Wind Loading

Minimum wind force to the post, $f_{min} = (0.6) \ 16.0 \ A_w = 9.6 \times \frac{45.6}{A_w} = \frac{438}{f_{min}}$ lbs

Calculated Wind Force to the post, $f_w = q_w K_z K_{zt} K_e R_{1w} F_{hw} C_{fw} A_w$

 $f_{w} = \frac{10.02 \times 0.57}{q_{w}} \times \frac{1.0}{K_{z}} \times \frac{0.96}{K_{zt}} \times \frac{1.01}{K_{e}} \times \frac{1.1}{R_{1w}} \times \frac{1.1}{F_{hw}} \times \frac{2.55}{C_{fw}} \times \frac{45.6}{A_{w}} = \frac{708}{f_{w}}$ Ibs

Maximum wind force to the post, $f_w' = maximum value of either f_{min} or f_w = \frac{708}{f'}$ lbs

The Axial Force supported by the post, $p_w = D_m s L$

$$P_{w} = \frac{2.2 \text{ psf}}{D_{m}} \times \frac{6 \text{ ft}}{s} \times \frac{8 \text{ ft}}{L} = \frac{106}{p_{w}} \text{ lbs}$$

 $5 \times p_w = 530$ lbs (used for stability check)

$f_w = 708 \text{ lbs}$ $p_w = 106 \text{ lbs}$ $5 \times p_i = 530 \text{ lbs}$

	Maximum Allowable Wind Force at Mid-height, F _a (lbs) & Maximum Axial Force, P _a (lbs)														
Post	Weight					Fenc	e Height,	h (ft)							
Size	D _p (plf)		3	4	5	6	7	8	9	10	11				
				#2 Southern Pine - Pressure Treated											
4 × 4	6.2	Fa	699	524	419	349	299	-	-	-	-				
4.4	0.2	Pa	7,640	4,948	3,332	2,369	1,763	-	-	-	-				
6 × 4	0.9	F,	1,439	1,053	823	670	561	479	416	366	325				
0.84	9.0	Pa	16,797	14,108	10,978	8,349	6,425	5,050	4,057	3,322	2,767				
6 4 6	15.2	Fa	2,465	1,849	1,479	1,232	1,056	924	822	739	672				
0 X 0	15.5	Pa	26,395	22,169	17,251	13,120	10,096	7,936	6,375	5,221	4,348				
				#	2 Wester	n Red Ceo	dar								
4 × 4	2.0	Fa	445	333	267	222	191	-	-	-					
4.4	2.0	Pa	4,959	3,419	2,356	1,692	1,266	-	-	-	-				
6 × 4	2.5	Fa	1,010	740	579	472	395	338	294	258	230				
0 X 4	5.5	Pa	10,111	8,915	7,320	5,764	4,517	3,587	2,898	2,382	1,989				
6.46	4.0	Fa	1,725	1,294	1,035	863	739	647	575	518	471				
0 X 0	4.8	Pa	15,889	14,009	11,503	9,057	7,099	5,636	4,554	3,743	3,126				
Post	D _p (plf)		3	4	5	6	7	8	9	10	11				
Size	Weight					Fenc	e Height,	h (ft)							

Lightest wood post that looks possible is 6 x 6 – checking #2 southern pine pressure treated

For steel pipes

	All	ow	able V	Vind Fo	rce at I	Mid-he	ight, F	, (lbs) 8	Allow	able A	xial Fo	rce, P _a	(lbs) - (Group	A and	IC Post	s	
Post	Weight, D									Fence Hei	ight, H (ft)						
Size	lbs / ft		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
			•				Schedul	e 40 / AS	TM F1043	/ Group	1A / 30 k	si						
1-5/8"	2.2	F,	182	152	130	114	-	-	-	-	-	-	-	-	-	-	-	-
1-5/6	2.5	P _a	1,745*	1,212*	890*	681*	-	-	-	-	-	-	-	-	-	-	-	-
1.7/8"	2.7	F,	252	210	180	157	140	-	-	-	-	-	-	-	-	-	-	-
1-1/0	2.1	Ρ,	2,773*	1,926*	1,415*	1,083*	856*	-	-	-	-	-	-	-	-	-	-	-
2-3/8"	37	F,	427	356	305	267	237	213	194	178	-	-	-	-	-	-	-	-
,-		Ρ,	5,943	4,127	3,032*	2,321*	1,834*	1,485*	1,227*	1,031*	-	-	-	-	-	-	-	-
2-7/8"	5.8	F,	817	680	583	510	453	408	371	340	314	291	272	-	-	-	-	-
2.770		Ρ.	13.272	9.494	6.975	5.340*	4.219*	3.418*	2.824*	2.373*	2.022*	1.743*	1.519*	-	-	-	-	-
3-1/2"	7.6	F,	1,310	1,092	936	819	728	655	595	546	504	468	436	409	385	364	-	-
/-		Ρ,	22,458	17,944	13,733	10,514	8,307	6,729*	5,561*	4,673*	3,981*	3,433*	2,990*	2,628*	2,328*	2,076*	-	-
4"	9.1	F,	1,809	1,507	1,292	1,130	1,005	904	822	753	695	646	603	565	532	502	476	452
		Ρ,	30,535	25,757	21,064	16,666	13,168	10,666	8,815*	7,407*	6,311*	5,442*	4,740*	4,166*	3,690*	3,292*	2,954*	2,666*
4-1/2"	10.8	F,	2,419	2,016	1,728	1,512	1,344	1,209	1,099	1,008	930	864	806	756	711	672	636	604
		Ρ,	39,301	34,390	29,370	24,481	19,876	16,100	13,305	11,180	9,526*	8,214*	7,155*	6,289*	5,570*	4,969*	4,459*	4,025*
5-9/16"	14.6	F,	4,069	3,391	2,906	2,543	2,260	2,034	1,849	1,695	1,565	1,453	1,356	1,271	1,196	1,130	1,070	1,017
		Ρ,	59,190	54,288	49,016	43,565	38,117	32,830	27,809	23,367	19,910	17,167	14,955*	13,144*	11,643*	10,385*	9,321*	8,412*
6-5/8"	19.0	F,	6,319	5,266	4,514	3,949	3,511	3,159	2,872	2,633	2,430	2,257	2,106	1,974	1,858	1,755	1,663	1,579
		Ρ,	81,532	76,751	71,462	65,810	59,943	54,002	48,119	42,408	36,967	31,890	27,780	24,416	21,628	19,291*	17,314*	15,626*
8-5/8"	28.6	F,	12,434	10,362	8,881	7,771	6,908	6,217	5,652	5,181	4,782	4,440	4,144	3,885	3,657	3,454	3,272	3,108
		Ρ,	129,849	125,342	120,217	114,564	108,477	102,056	95,401	88,609	81,773	74,982	68,314	61,841	55,623	49,640	44,552	40,208
							40 Wei	ight / AST	M F1043	/ Group :	1C / 50 ks	i						
1-5/8"	1.8	F,	244	203	174	152	-	-	-	-	-	-	-	-	-	-	-	-
		Ρ,	1,455*	1,010*	742*	568*	-	-	-	-	-	-	-	-	-	-	-	-
1-7/8"	2.3	F,	350	292	250	219	194	175	-	-	-	-	-	-	-	-	-	-
,.		Ρ,	2,385	1,656*	1,217*	931*	736*	596*	-	-	-	-	-	-	-	-	-	-
2-3/8"	3.1	F,	608	507	434	380	338	304	276	253	-	-	-	-	-	-	-	-
		P.	5 178	3 596	2.642*	2 022*	1.598*	1 294*	1.069*	899*	-		-	-	-	-	-	-
2-7/8"	4.6	F,	1,095	912	782	684	608	547	497	456	421	391	365	-	-	-	-	-
		Ρ,	11,274	7,829	5,752	4,404*	3,479*	2,818*	2,329*	1,957*	1,667*	1,438*	1,252*	-	-	-	-	-
4"	6.6	F,	2,222	1,852	1,587	1,389	1,234	1,111	1,010	926	854	793	740	694	653	617	584	555
		P _a	28,899	22,018	16,247	12,439	9,828	7,961	6,579*	5,528*	4,710*	4,061*	3,538*	3,109*	2,754*	2,457*	2,205*	1,990*
4-1/2"	7.4	F,	2,851	2,376	2,036	1,782	1,584	1,425	1,296	1,188	1,096	1,018	950	891	838	792	750	712
		P _a	37,346	30,183	23,447	17,951	14,184	11,489	9,495	7,978	6,798*	5,861*	5,106*	4,487*	3,975*	3,546*	3,182*	2,872*

Post Selection

Using the diameter of the desired post size, O.D., and the Fence Height, h, look through the post charts for post types that have F_a values larger than the f_w ' value, and P_a values larger than the p_w value. If the post has an * next to the P_a value, only use it if the P_a value is $\geq 5 \times p_w$ due to stability requirements.

Put in the O.D, post type, weight per foot, D_p and fence height, h and calculate p_w ' to include the weight of the post. Add any additional weight if needed.

 f_w' / F_a is the bending strength ratio for Wind. p_w' / P_a is the axial strength ratio for Wind

If the sum of the bending strength and axial strength ratios for both Wind and Wind & Ice loading are \leq 1.0, the post is acceptable.

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$				
6 x 6	#2 pine PT	15.3	6	p _w ' = 198 lbs				
Wind								
$f_{w}' = 708 = 0.57$ $p_{w}' = 198 = 0.2$ $f_{w}' + p_{w}' = 0.59$								
$F_a = 1,232$ $P_a = 13,120$ $F_a = P_a$								

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$				
3-1/2"	Sched 40 / 30 ksi	7.6	6	$p_w' = 152 \text{ lbs}$				
Wind								
f _w ' = F _a =	708 = 0.65		p _w ' = P _a =	<u>152</u> <u>17,944</u> = 0.01	$\frac{f_{w'}}{F_{a}} + \frac{p_{w'}}{P_{a}} = 0.66$			

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$				
2-7/8"	40 qr / 50 ksi	4.6	6	p _w ' = 134 lbs				
Wind								
$f_{w}' = \frac{708}{100} = 0.78$ $p_{w}' = \frac{134}{100} = 0.02$ $\frac{f_{w}'}{100} + \frac{p_{w}'}{100} = 0.80$								
F _a = 912			P _a =	7,829	Fa Pa			

Next, size post footing assuming 2-7/8" dia post - 6-7/8" minium footing diameter - start with 9" (common auger) Copyright © 2025 - Dinsmore Engineering, LLC

With a 9" dia footing, the depth had to be over 6'. Trying again with a 12" diameter footing. Footing Sizing (non-constrained footings)