


tandard: ASCE/SEI 7-16	q _w Va	alues
tanuaru. ASUC/SEI /-10	V _w (mph)	q _w (psf)
Risk	85	8.02
ategory:	90	8.99
Soil Class:	95	10.02
	100	11.10
	105	12.24
Wind	110	13.43
127 Vmph	115	14.68
127 11121	120	15.98
	125	17.34
ce	130	18.75
0 in.	135	20.23
	140	21.75

K_z Values for ASCE 7-10 & 7-16								
Fence Exposure Class								
Height, h (ft)	B C D							
0-15	0.57	0.85	1.03					
16	0.59	0.86	1.04					
17	0.60	0.87	1.05					
18	0.61	0.88	1.06					
19	0.61	0.89	1.07					
20	0.62	0.90	1.08					

https://ascehazardtool.org/

	K _e Values									
Site	Site ASCE									
Elevation	7-16 & 7-22	7-10								
z _e (ft)	К _е	K _e = 1.0								
0	1.00	1.00								
500	0.98	1.00								
1,000	0.96	1.00								
1,500	0.95	1.00								
2,000	0.93	1.00								
2,500	0.91	1.00								
3,000	0.90	1.00								
3,500	0.88	1.00								
4,000	0.87	1.00								
4,500	0.85	1.00								
5,000	0.84	1.00								

1-3/4" Chain Link Mesh Variables 11-1/2 ga to 5 ga

1-3/4" Mesh Wind & Weight Values									
Gauge	Dia (in)	3	C _{fw}	D _m (psf)					
5	0.207	0.22	1.3	1.9					
6	0.192	0.21	1.3	1.6					
8	0.162	0.18	1.3	1.2					
9	0.148	0.16	1.3	1.0					
10	0.135	0.15	1.3	0.8					
11	0.120	0.13	1.3	0.6					
11-1/2	0.113	0.12	1.3	0.6					

ε = solidity ratio for chain link

- ϵ^\prime = solidity ratio for iced chain link
- C_{fw} = wind force coefficient
- C_{fi} = wind on ice force coefficient
- D_m = estimated weight of chain link mesh
- Check with supplier for actual weight

D_i = estimated weight of ice (includes 0.7 ASD factor)

The values below are only valid for Risk Category I and $K_{\rm zt}$ = 1.0 For ice thickness not shown below, round up to next nearest value

$K_{zt} = 1.0$ for flat ground

See ASEC 7 Fig. 26.8-1 to calculate K_{zt} values for site locations on hills or escarpments Site Location: Orlando, FL

Customer:

Site and Geometrical Variables

IBC_2021 ASCE 716	Risk Category	Frost Depth ft
Basic Wind Speed, $V_w = 127$ m	ph	
Wind Pressure, q _w = <u>18.75</u> psf	wind speed rounded up to 130	
Exposure Category <u>C</u>	Topographical Factor, K _{zt} = _	1.0
Site Elevation, $Z_e = 102$ ft	Elevation Factor, $K_e = 1.0$	_
Height of fence, h = <u>10</u> ft	Gap at bottom of fence, g = _	ft (zero if no gap)
Height of fencing material, s = h - g	= <u>10</u> ft	

Velocity Pressure Exposure Coefficient, $K_z = _0.85$

Wind & Axial Loading Fence length doesn't affect design for open fencing Post spacing, L = 10 ft Fence Run # 1 Length of Fence, B = 100 ft Solidity Ratio, $\varepsilon = 0.16$ Inverted Fence Opening Reduction Factor, $R_{1w} = 1.0$ Wind Force Coefficient, $C_{fw} = 1.3$ Force Height Adjustment Factor, $F_{hw} = 1.0$ Expected Post Diameter or Width, $\mathcal{O}_{p} = \frac{2 - 7/8}{1}$ in Mid Rail Diameter or Width, $\mathcal{O}_{p} = 1-5/8$ in Top Rail Diameter or Width, $\mathcal{O}_r = \frac{1-5/8}{1-5/8}$ in $(\mathcal{O}_r \otimes \mathcal{O}_m - \text{set to Zero if not applicable for rails})$ Wind Area of Post, $A_p = \emptyset_p / 12 \times h = \frac{2.875}{\emptyset_p} \div 12 \times \frac{10 \text{ ft}}{h} = \frac{2.4}{A_p} \text{ ft}^2$ ($A_p = 0 \text{ for solid / mostly solid fencing}$) \emptyset_p h A_p Wind Area of Rails, $A_r = (\emptyset_r / 12) \times 2 \times L + (\emptyset_m / 12) \times L$ ($A_r = 0$ if no rails) $A_{r} = \left(\underbrace{1.625}_{\emptyset_{r}} \div 12 \times 2 \times \underbrace{10 \text{ ft}}_{L} \right) + \left(\underbrace{1.625}_{\emptyset_{m}} \div 12 \times \underbrace{10 \text{ ft}}_{L} \right) = \underbrace{4.1}_{A_{r}} \text{ ft}^{2}$ Wind area tributary to the post, $A_w = \varepsilon s L + A_p + A_r = \frac{0.16}{\varepsilon} \times \frac{10}{s} \times \frac{10}{L} + \frac{2.4}{A_p} + \frac{4.1}{A_r} = \frac{22.5}{A_w} ft^2$ Dead Load of fencing materials, D_m <u>1.0</u> psf

Lateral and Axial Forces for Wind Loading

Minimum wind force to the post, $f_{min} = (0.6) \ 16.0 \ A_w = 9.6 \times \frac{22.5}{A_w} = \frac{216}{f_{min}}$ lbs

Calculated Wind Force to the post, $f_w = q_w K_z K_{zt} K_e R_{1w} F_{hw} C_{fw} A_w$ $f_w = \frac{18.75}{q_w} \times \frac{0.85}{K_z} \times \frac{1.0}{K_{zt}} \times \frac{1.0}{K_e} \times \frac{1.0 \times 1.0 \times 1.0 \times 1.3}{R_{1w}} \times \frac{1.3}{C_{fw}} \times \frac{22.5}{A_w} = \frac{466}{f_w}$ lbs Maximum wind force to the post, $f_w' =$ maximum value of either f_{mim} or $f_w = \frac{466}{f_w'}$ lbs Axial force supported by the post, $p_a = D_m s L$ $p_w = \frac{1.0}{D_m} \times \frac{10 \text{ ft}}{s} \times \frac{10 \text{ ft}}{L} = \frac{100}{p_w}$ lbs add in weight of rails if known $5 \times p_w = \frac{500}{D_w}$ lbs (used for stability check)

$f_w = 466 \text{ lbs}$ $p_w = 100 \text{ lbs}$ $5 \times p_i = 500 \text{ lbs}$

	Alle	ow	able W	/ind Fo	rce at I	Mid-he	ight, F	a (lbs) 8		able A	xial Fo	rce, P _a	(lbs) - (Group	A and	IC Post	s	
Post	Weight, D _p	Г								Fence He	ight, H (ft)						
Size	lbs / ft		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Schedule 40 / ASTM F1043 / Group 1A / 30 ksi																	
1-5/8"	2.3	F,	182	152	130	114	-	-	-	-	-	-	-	-	-	-	-	-
1-3/0	2.3	Ρ,	1,745*	1,212*	890*	681*	-	-	-	-	-	-	-	-	-	-	-	-
1-7/8"	2.7	F,	252	210	180	157	140	-	-	-	-	-	-	-	-	-	-	-
1-1/0	2.7	Ρ,	2,773*	1,926*	1,415*	1,083*	856*	-	-	-	-	-	-	-	-	-	-	-
2-3/8"	3.7	F,	427	356	305	267	237	213	194	178	-	-	-	-	-	-	-	-
		Ρ,	5,943	4,127	3,032*	2,321*	1,834*	1,485*	1,227*	1,031*	-	-	-	-	-	-	-	-
2-7/8"	5.8	F,	817	680	583	510	453	408	371	340	314	291	272	-	-	-	-	-
,.		P _a	13,272	9,494	6,975	5,340*	4,219*	3,418*	2,824*	2,373*	2,022*	1,743*	1,519*	-	-	-	-	-
3-1/2"	7.6	F,	1,310	1,092	936	819	728	655	595	546	504	468	436	409	385	364	-	-
		Ρ,	22,458	17,944	13,733	10,514	8,307	6,729*	5,561*	4,673*	3,981*	3,433*	2,990*	2,628*	2,328*	2,076*	-	-
4"	9.1	F.	1,809	1,507	1,292	1,130	1,005	904	822	753	695	646	603	565	532	502	476	452
		÷	30,535	25,757	21,064	16,666	13,168	10,666	8,815*	7,407*	6,311* 930	5,442* 864	4,740* 806	4,166*	3,690*	3,292*	2,954*	2,666*
4-1/2"	10.8	Ľ,	39,301	34,390	29,370	24,481	1,344	1,209	1,099 13,305	1,008 11,180	9,526*	8,214*	7,155*	6,289*	5,570*	4,969*	4,459*	4,025*
		-	4,069	34,390	2,906	2,543	2,260	2,034	1,849	1,695	1,565	1,453	1,356	1,271	1,196	1,130	1,070	1,017
5-9/16"	14.6	6	59,190	54,288	49,016	43,565	38,117	32,830	27,809	23,367	19,910	17,167	14,955*	13,144*	11,643*	10,385*	9,321*	8,412*
		-	6,319	5,266	49,010	3,949	3,511	3,159	2,872	2,633	2,430	2,257	2,106	1.974	1,858	1,755	1,663	1.579
6-5/8"	19.0		81,532	76,751	71,462	65,810	59,943	54,002	48,119	42,408	36,967	31,890	27,780	24,416	21,628	19,291*	17,314*	15,626*
		F.	12,434	10,362	8,881	7,771	6,908	6,217	5,652	5,181	4,782	4,440	4.144	3,885	3,657	3,454	3,272	3,108
8-5/8"	28.6	Ρ,	129,849	125,342	120,217	114,564		102,056	95,401	88,609	81,773	74,982	68,314	61,841	55,623	49,640	44,552	40,208
		Г					40 We	ight / AST	M F1043	/ Group		i						
a E /08	10	F.	244	203	174	152	-	-	-	-	-	-	-	-	-	-	-	-
1-5/8"	1.8	Ρ,	1,455*	1,010*	742*	568*	-	-	-	-	-	-	-	-	-	-	-	-
4 7 (0)		F,	350	292	250	219	194	175	-	-	-	-	-	-	-	-	-	-
1-7/8"	2.3	Ρ,	2,385	1,656*	1,217*	931*	736*	596*	-	-	-	-	-	-	-	-	-	-
2-3/8"	3.1	F,	608	507	434	380	338	304	276	253	-	-	-	-	-	-	-	-
2-3/6	5.1	Ρ.	5.178	3.596	2.642*	2.022*	1.598*	1.294*	1.069*	899*	-	-	-	-	-	-	-	-
2-7/8"	4.6	F,	1,095	912	782	684	608	547	497	456	421	391	365	-	-	-	-	-
2-1/0	4.0	P,	11,274	7,829	5,752	4,404*	3,479*	2,818*	2,329*	1,957*	1,667*	1,438*	1,252*	-	-	-	-	-
4"	6.6	F,	2,222	1,852	1,587	1,389	1,234	1,111	1,010	926	854	793	740	694	653	617	584	555
-		Ρ.	28,899	22,018	16,247	12,439	9,828	7,961	6,579*	5,528*	4,710*	4,061*	3,538*	3,109*	2,754*	2,457*	2,205*	1,990*
4-1/2"	7.4	F,	2,851	2,376	2,036	1,782	1,584	1,425	1,296	1,188	1,096	1,018	950	891	838	792	750	712
		Ρ,	37,346	30,183	23,447	17,951	14,184	11,489	9,495	7,978	6,798*	5,861*	5,106*	4,487*	3,975*	3,546*	3,182*	2,872*

Post Selection

Using the size of the desired post and the Fence Height, h, look through the post charts for post types that have an F_a value larger than the f_w value, and a P_a value larger than the p_w value. If the post has an * next to the P_a value, only use it if the P_a value is $\geq 5 \times p_w$ due to stability requirements.

Put in the O.D or size, post type, weight per foot, D_p and fence height, h and calculate p_w ' to include the weight of the post. Add any additional weight if needed.

f_w' / F_a is the bending strength ratio for Wind

 p_w ' / P_a is the axial strength ratio for Wind

If the sum of the bending strength and axial strength ratios are \leq 1.0, the post is acceptable.

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$					
2-7/8"	40 wt / 50 ksi	4.6	10	p _w '= 146					
	Wind								
· ·	$ \begin{array}{c} \mathbf{f_w'} = & 466 \\ \mathbf{F_a} = & 547 \end{array} = & 0.85 \end{array} \qquad \begin{array}{c} \mathbf{p_w'} = & 146 \\ \mathbf{P_a} = & 2,818^* \end{array} = & 0.05 \end{array} \qquad \begin{array}{c} \frac{\mathbf{f_w'}}{\mathbf{F_a}} + \frac{\mathbf{p_w'}}{\mathbf{P_a}} = & 0.90 - OK \end{array} $								

⁵ x pw = 500 < 2,818 - OK

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$				
				p _w ' =				
	Wind							
f _w ' =	$f_{w'} = $ = $p_{w'} = $ = $\frac{f_{w'}}{p_{w'}} + \frac{p_{w'}}{p_{w'}} =$							
F _a =			P _a =		F _a P _a			

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$				
				p _w ' =				
	Wind							
f _w ' =	$f_{w'} = $ = $p_{w'} = $ = $\frac{f_{w'}}{p_{w'}} + \frac{p_{w'}}{p_{w'}} =$							
F _a =	$F_a = P_a = F_a P_a$							

may be deeper than the available equipment can bore Design Footing Depth, D = 5 ft Footing Diameter, b = 12 ft assumes soil class 4 Lateral Bearing Pressure per foot of depth, S = 150 psf / ft per geotechnical analysis or table 1806.2 Maximum Wind Force, $P = f_w' = \frac{446}{10}$ lbs Post Height, h = 10 ft Modifier for Isolated Posts, M = 2.0 per IBC §1086.3.4 Allowable Lateral Soil Bearing Pressure for non-constrained footings, $S_1 = \frac{1}{3} D S M$ $S_1 = \frac{1}{3} \times \frac{5 \text{ ft}}{D} \times \frac{150}{S} \times 2.0 = \frac{500}{S_1} \text{ psf}$ per IBC §1807.3.2.1 Soil Bearing Factor, $A = 2.34 P / (S_1 b)$ per IBC §1807.3.2.1 $A = 2.34 \times \underline{446} \div (\underline{500} \times \underline{1.0}) = \underline{2.087}$ Minimum Depth, d = $\frac{1}{2}$ A (1 + $\sqrt{1 + \frac{4.36 \frac{1}{2}h}{A}}$) per Eq. 18-1, modified for fencing $d = \frac{1}{2} \times \frac{2.087}{A} \times (1 + \sqrt{1 + (4.36 \times \frac{1}{2} \times \frac{10 \text{ ft}}{h} \div \frac{2.087}{A})}) = \frac{4.6}{d} \text{ ft}$ You can run the Area of the bottom of the footing, $A_f = \pi (\frac{1}{2}b)^2 = 3.14 \times (\frac{1}{2} \times \underline{1.0}_{b})^2 = \underline{0.785}_{\Delta_f} ft^2$ numbers again and get down to 4' 9" Footing Volume, V = A_f D = $\frac{0.785}{\Delta_f}$ × $\frac{5}{D}$ = $\frac{3.9}{V}$ ft³ Weight of footing, $D_f = 150 \text{ V} = 150 \times \frac{3.9}{\text{V}} = \frac{585}{D_f}$ lbs (Typical Concrete weight is 150 lbs / ft³) Axial Dead Load, $D_{max} = D_f + p_w'$ $D_{max} = \frac{585}{D_f} + \frac{146}{p_w'} = \frac{731}{D_{max}}$ lbs assumes soil class 4 Maximum Vertical Foundation Pressure, $S_v = 2,000$ psf per geotechnical analysis or table 1806.2 Maximum Axial Pressure on the soil, $s_y = D_{max} / A_f = \frac{731}{D_{max}} \div \frac{0.785}{A_f} = \frac{931}{s_y} \text{ psf}$ Actual to Allowable Soil Strength Ratio, $s_y / S_y = \frac{931}{s_v} \div \frac{2,000}{S_v} = \frac{0.47}{S_v} \le 1.0$ is OK

Footing Sizing (non-constrained footings)

minimum footing diameter is 7" but that results in a 6' deep footing which

sy / Sy must be less than 1.0. If not, start over with a larger footing diameter, b