The Fence Design Tool is currently in development. What is shown on the next page is the tab that would be used for any type of fencing for both wind and ice loading. The Fence Design Tool will have a tab specifically for chain link fencing that will calculate almost all of the variables so you won't have to spend time looking the values up in the various tables shown on FenceDesign.com.

Page 2 shows the C_f value calculator for evenly spaced fence posts. In this case, you're looking for the equivalent post C_f value for the worst case post you would use to size all the posts. Alternatively, on a long enough fence where it would be worth it, you can size the inner line posts to the lower Case A wind forces. Those post and footings can be smaller as the forces away from the ends and corners are lower.

There will eventually be a C_f tab for uneven post spacings where the spacings can be adjusted near ends and corners to keep all of the posts and footings sized to the lower Case A wind forces.

Page 3 shows the force calculations for the worst case post, and a post size that works. This uses the same starting values as the example 3 hand calculations, but resulting forces are slightly different due to rounding in the hand calcs.

Page 4 shows the range of post types that can be analyzed. New types and sizes can be added if there is demand for them.

Page 5 shows 2 passes of the post footing calculations that match what was done on the example 3 hand calculations. With the Fence Calculations tool, you can quickly try a variety of depths and diameters to find the most economical footing size that minimizes the amount of soil that needs to be removed, and the volume of concrete required.

			C _f value	es for solid & mostly solid	fencin	g (ε or ε' > 0.	7)			
B =	96.000	ft	Length of Straight I	ence Run Being Analyzed		Maximum Pos	t Spacing	8.000 ft		
L =	8.000	ft	Even Post Spacing -	· 13 Posts, 8' 0" on Center		Even Post		8.000 ft		
h =	10.000	ft	Fence Height (3' m	inimum - 20' maximum)		Spacings		7.385 ft		
g =	0.000	ft		round and bottom of fencing		for Length,		6.857 ft		
s =	10.000	ft	Height of Fencing N	Naterials, s = h - g		В		6.400 ft		
s / h =	1.000	-	Clearance Ratio							
B / s =	9.600	-	Aspect Ratio							
R ₂ =	0.800	-	Case C Reduction F	actor		$R_2 = (1.8 - s/h)$	≤ 1.0			
L _{rL} =	0.000	ft	Length of Left Retu	rn Corner (0 ft if no return)		Left and right ends of fence run when looking at the				
L _{rR} =	0.000	ft	Length of Right Ret	urn Corner (0 ft if no return)		front face of th	e fencing			
$L_{rL} / s =$	0.000	-	Left Return Corner	Length to Fencing Height Ratio						
L _{rR} / s =	0.000	-	Right Return Corne	r Length to Fencing Height Rati	О					
R _{3L} =	1.000	-	Left Return Corner							
R _{3R} =	1.000	-	Right Return Corne	r Reduction Factor		Per ASCE 7 §29	solid wall i	return corner table		
			Force Coefficient -							
C _{fA} =	1.304	-	Use C _{fA} for line pos	ts away from ends and corners		Per ASCE 7 §29	solid wall	Case A table		
C _{fA-max} =		_		nat controls elsewhere in fence		Put in the high	est C _f , cont	roling a fence run		
	C C _f Values		B.rest old rains ti			r are me mgm	AIA			
			Force Coefficient			I				
C _{f0} =	3.710	-	Force Coefficient -							
C _{f1} =	2.410		Force Coefficient -							
C _{f2} =	1.810	-	Force Coefficient -	Case C - 2s to 3s						
C _{f3} =	0.970	-	Force Coefficient -	Case C - > 3s		Per ASCE 7 §29 solid wall Case C table				
C _{f4} =	0.000	-	N/A for B/s < 13			Values in red a	re lower th	an the Case A C _f valu	ıe	
C _{f5} =	0.000	-	N/A for B/s < 13			-				
C _{f6} =	0.000	-	N/A for B/s < 13							
		lues po		Factor, R ₂ and Return Corner I	Reduction	on Factors, R ₃₁ 8	& R₂₽			
C _{fr0L} =	2.968	_		efficient - Left Case C - 0 to s		$C_{frOL} = R_2 R_{3L} C_{fO}$		- 0 to s region		
C _{frOR} =	2.968	_		fficient - Right Case C - 0 to s		$C_{frOR} = R_2 R_{3R} C_{fO}$		nd - 0 to s region		
C _{fr1} =	1.928			efficient - Case C - s to 2s		$C_{fr1} = R_2 C_{f1}$,			
				efficient - Case C - 2s to 3s						
C _{fr2} =	1.448	-				$C_{fr2} = R_2 C_{f2}$				
C _{fr3} =	0.776	-		efficient - Case C - > 3s		$C_{fr3} = R_2 C_{f3}$				
$C_{fr4} =$	0.000	-	N/A for B/s < 13			$C_{fr4} = R_2 C_{f4}$				
$C_{fr5} =$	0.000	-	N/A for B/s < 13			$C_{fr5} = R_2 C_{f5}$				
$C_{fr6} =$	0.000	-	N/A for B/s < 13			$C_{fr6} = R_2 C_{f6}$				
				Equivalent Post C _f values per	Post Sp	pacing, L				
C _{FE1} =	2.968	-	Left End				C _{FE1} =	2.968 - Right	End	
C _{FE2} =	2.676	-	2 nd Post	Use the highest C _f value for	Case C	posts	C _{FE2} =	2.676 - 2 nd Pc	st	
C _{FE3} =	1.901	-	3 rd Post				C _{FE3} =			
C _{FE4} =	1.487		4 th Post				C _{FE4} =			
				Caco A control the cont	or E no-	+(c)				
$C_{FE5} =$	1.304	-	5 th Post	Case A controls the cent	er 5 pos	it(S)	C _{FE5} =	1.304 - 5 th Po	st	
End Post			Worst Case Post							
0	8′-	0″ ——	0	8′-0″						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							2.68			
- - -	4'-0" -	- 8'-0"	2'-0"	6'-0"						

	Wind & Ice Design for Any Fence Type per IBC / ASCE 7 and FenceDesign.com								
-	IBC 2018	-	Building Code	Per site location					
-		-	Risk Category	Per client - Risk Category I is typical for fencing					
-	С	-	Exposure Class						
Z _e =	44	ft	Site Elevation						
V _w =	105	mph	Basic Wind Speed	Per site location					
t =	1.00	in	Nominal Ice Thickness						
$V_i =$	40	mph	Concurrent Gust Wind Speed for Ice Loading						
K _{zt} =	1.000		Topographic Factor	K_{zt} = 1.0 for flat ground. See ASCE 7 Fig. 26.8-1 for hilly regions					
h =	10.000	ft	Fence Height	Per Fence Design					
g =	0.000	ft	Gap at the Bottom of the Fencing	If there is no gap at the bottom, set to 0 ft					
s =	10.000	ft	Height of Fencing Material	s = h - g					
L =	8.000	ft	Post Spacing	L = Average of spacing on each side (Tributary Width)					
K _d =	0.850	-	Wind Directionality Factor	Per ASCE 7-16, Table 26.6-1					
G =	0.850	-	Gust Effect Factor	Per §26.11.1 Approximate natural frequency, $n_a > 1 H_z$					
q _w =	12.235	psf	ASD Wind Pressure w/o Site Modifiers	$q_w = (0.6) 0.00256 K_d G V_w^2$					
q _i =	2.072	psf	ASD Wind on Ice Pressure w/o Site Modifiers	$q_i = (0.7) 0.00256 K_d G V_i^2$					
K _z =	0.849	-	Velocity Pressure Exposure Coefficient	Per Table 26.10-1, Note 1					
K _e =	0.998	-	Ground Elevation Factor	$K_e = e^{-0.0000362Ze}$ per Note 2 of Table 26.9-1					
ε =	0.160	-	Solidity Ratio	Per fence geometry					
C _{fw} =	1.300	-	Wind Force Coefficient	Per ASCE 7 §29 Solid Wall or Open Frame tables					
D _w =	1.000	psf	Weight of Fencing Materials	Per Fence Design					
Ø _p =	2.875	in	Expected Post Diameter or Width	5 11 11 116 1 1 1 6 11 11 1 5					
Ø _r =	1.625	in	Expected Top Rail Diameter or Width	For solid or mostly solid fencing, leave these fields blank. For open					
Ø _m =	1.625	in	Expected Mid Rail Diameter or Width	fencing, leave rails blank if not applicable.					
A _p =	2.396	ft ²	Expected Post Wind Area	$A_p = (\emptyset_p / 12) \times h$					
A _r =	3.250	ft ²	Effective Rail Wind Area	$A_r = (\emptyset_r / 12) \times 2 \times L + (\emptyset_m / 12) \times L$					
A _w =	18.446	ft ²	Wind Area Tributary to the Post	$A_w = \varepsilon s L + A_p + A_r$					
R _{1w} =	1.000	-	Inverted Fence Opening Reduction Factor - Wind						
F _{hw} =	1.000	-	Force Height Adjustment Factor - Wind	Per FenceDesign.com Fence Post and Footing Design Guide					
f _{min} =	177	lbs	Minimum Wind Force	Per §29.7					
f _w =	249	lbs	Calculated Wind Force at Post Mid Height	$f_w = q_w k_z k_{zt} K_e R_{1w} F_{hw} C_{fw} A_w$					
f _w ' =	249	lbs	Maximum Wind Force at Post Mid Height	$f_w' = Max(f_{min}, f_w)$					
p _w =	80	lbs	Maximum Axial Force for Wind Loading	p _w = D _w s L					
ε' =	0.970	-	Iced Solidity Ratio	Per ASCE 7-16 §10 or FenceDesign.com Tables					
C _{fi} =	2.760	-	Wind on Ice Force Coefficient	Per ASCE 7 §29 Solid Wall or Open Frame tables					
D _i =	4.400	psf	Weight of Ice	Per ASCE 7 §10					
A _i =	77.6	ft ²	Iced Area Tributary to the Post	$A_i = \epsilon' s L$					
R _{1i} =	1.005	-	Inverted Fence Opening Reduction Factor - Ice						
F _{hi} =	1.100	-	Force Height Adjustment Factor - Wind	Per FenceDesign.com Fence Post and Footing Design Guide					
f _i =	416	lbs	Maximum Wind on Ice Force at Post Mid Height	$f_i = q_i k_z k_{zt} K_e R_{1i} F_{hi} C_{fi} A_i$					
p _i =	432	lbs	Maximum Axial Force for Wind on Ice Loading	$p_i = (D_w + D_i) s L$					
۳۱	.52		THEATHER TOTAL TOT	M (2M - 21) 2 -					

Post Strength Analysis

Post Type Steel Circular Tube Post Weight, $D_p = 4.6$ lbs / ft $p_w' = p_w + D_p h + D_o$ O.D. 2-7/8" Additional weight, $D_o = 0$ lbs (per post) $p_i' = p_i + D_p h + D_o$ Thickness & Strength 40 Wt, 50 ksi (Group IC) Slenderness Ratio, KL/r = 263

Combined Bending & Axial Loading - Post Stress Ratios - Wind							
f _w ' =	249		p _w ' =	126	- = 0.04	$\frac{f_{w}'}{f_{w}} + \frac{p_{w}'}{f_{w}} = 0.50$	ОК
F _a =	547	_ = 0.43	P _a =	2,818	F_a P_a $= 0.30$	OK	
Combined Bending & Axial Loading - Post Stress Ratios - Wind & Ice							
f _i =	416		p _i ' =	478	- = 0.17	$\frac{f_i}{} + \frac{p_i'}{} = 0.93$	ОК
F _a =	547	0.76	P _a =	2,818	0.17	${}$ F_a $+$ ${}$ P_a $-$ 0.93	UK

With the Fence Design Tool, you can quickly check many different post sizes & types.

Post Strength Analysis

Post Strength Analysis

Post Strength Analysis

Post Strength Analysis

Post Type Gauge & Depth Grientation & Bracing Strong Axis - Top Bracing Steel C Channel Post Weight, $D_p = 4.6$ lbs / ft $p_w' = p_w + D_p h + D_o$ Additional weight, $D_o = 0$ lbs (per post) $p_i' = p_i + D_p h + D_o$ Slenderness Ratio, KL/r = 199

Combined Bending & Axial Loading - Post Stress Ratios - Wind								
f _w ' =	249	= 0.46	p _w ' =	126	- = 0.04	$\frac{f_{w'}}{} + \frac{p_{w'}}{} = 0.49$	ок	
F _a =	545	= 0.46	P _a =	3,296	- 0.04	F _a P _a - 0.49	OK	
Combined Bending & Axial Loading - Post Stress Ratios - Wind & Ice								
f _i =	416		p _i ' =	478	0.1E	$\frac{f_i}{} + \frac{p_i'}{} = 0.91$	OK	
F _a =	545	= 0.76	P _a =	3,296	- = 0.15	F _a + P _a = 0.91	ОК	

Post Strength Analysis

Post Type Wood Size Wood Post Weight, $D_p = 15.3$ lbs / ft $p_w' = p_w + D_p h + D_o$ Additional weight, $D_o = 0$ lbs (per post) $p_i' = p_i + D_p h + D_o$ Size Pressure Treated #2 Yellow Pine Slenderness Ratio, KL/r = 159

Combined Bending & Axial Loading - Post Stress Ratios - Wind								
fw' =	249	= 0.34	p _w ' =	233	- = 0.04	$\frac{f_{w'}}{} + \frac{p_{w'}}{} = 0.38$	ок	
Fa =	739	= 0.34	P _a =	5,221	= 0.04	F _a + P _a = 0.38	OK	
Combined Bending & Axial Loading - Post Stress Ratios - Wind & Ice								
f _i =	416	0.56	p _i ' =	585	— = 0.11	f _i + p _i ' = 0.67	OK	
Fa =	739	= 0.56 -	P _a =	5,221	= 0.11	F _a + P _a = 0.67	ОК	

Example 3 - post footing calculations

Non-co	Non-constrained Concrete Footing for Embedded Posts							
D _p =	2.875	in	Post Diameter / Largest Width / Largest Diagona	al				
h =	120.000	in	Post Height					
b' =	6.875	in	Minimum Footing Diameter per IBC §1807.3.3(1	L)	$b' = D_p + 4$			
b =	9.000	in	Footing Diameter	ОК	b ≥ b' is OK			
D =	60.000		Design Footing Depth	ОК	12' ≥ D ≥ 2' is OK			
V =	2.209	ft ³	Volume of Excavated Soil / Volume of Concrete		$V = \pi \left(\frac{1}{2} b \right)^2 D$			
Lateral	Load							
P =	416.000	lb	Lateral Force		$P = f_w \text{ or } f_i$			
½h =	60.000	in	Height of Lateral Force Application		Modified for fencing - see Eq. 18-1 below			
S =	150.000	psf / ft	Allowable Lateral Soil Bearing Pressure per ft		Per geotech or Table 1806.2			
M =	2.000	-	Modifier for Isolated Poles		Per §1806.3.4			
S ₁ =	500.000	psf	Allowable Lateral Soil Bearing Pressure per Depth,	, D	Per §1807.3.2.1 $S_1 = \frac{1}{3} (D/12) S M$			
A =	2.596	ft	Soil Bearing Factor		Per $$1807.3.2.1$ A = $2.34P / (S_1(b/12))$			
d =	63.322	1	Minimum Facting Double and if it of facting		Eq. 18-1 ½h used in place of h			
u -	05.522	111	Minimum Footing Depth modified for fencing	BAD	d = $(\frac{1}{4}A(1 + (1 + 4.36 \frac{1}{4}(h/12) / A)^{\frac{1}{4}}))12$			
UC =	1.055	-	Unity Check		UC = d / D			
Axial Lo	oad							
D _f =	331.340	lbs	Footing Weight		D _f = V x 150 pcf			
w _f =	463.000	lbs	Fencing, Post & Ice (if applicable) Weight		$w_f = p_i' \text{ or } p_w'$			
D _{max} =	794.340	lbs	Axial Dead Load		$D_{\text{max}} = D_f + W_f$			
A _f =	0.442	ft ²	Footing Area		$A_f = \pi (\frac{1}{2}(b/12))^2$			
S _y =	2000.000	psf	Allowable Vertical Foundation Pressure		Per Geotech or Table 1806.2			
s _y =	1798.018	psf	Maximum Vertical Pressure	ОК	$p_a = D_{max} / A_f$			
UC =	0.899	-	Unity Check	UK	$UC = s_y / S_y$ $UC \le 1.0$ is OK			

Try again with a deeper footing

Non-constrained Concrete Footing for Embedded Posts							
-					1		
$D_p =$	2.875	in	Post Diameter / Largest Width / Largest Diagona				
h =	120.000	in	Post Height				
b' =	6.875	in	Minimum Footing Diameter per IBC §1807.3.3(1	L)	$b' = D_p + 4$		
D' =	42.000	in	Suggested Minimum Footing Depth per ASTM A	567	D' = Max(24", 24 + (H - 48) / 4)		
b =	9.000	in	Footing Diameter	ОК	b ≥ b' is OK		
D =	66.000	in	Design Footing Depth	ОК	12' ≥ D ≥ 2' is OK		
V =	2.430	ft ³	Volume of Excavated Soil / Volume of Concrete	•	$V = \pi (\%b)^2 D$		
Lateral	Load						
P =	416.000	lb	Lateral Force		P= f _w or f _i		
½h =	60.000	in	Height of Lateral Force Application		Modified for fencing - see Eq. 18-1 below		
S =	150.000	psf / ft	Allowable Lateral Soil Bearing Pressure per ft		Per geotech or Table 1806.2		
M =	2.000	-	Modifier for Isolated Poles		Per §1806.3.4		
S ₁ =	550.000	psf	Allowable Lateral Soil Bearing Pressure per Depth,	, D	Per §1807.3.2.1 $S_1 = \frac{1}{3} (D/12) S M$		
A =	2.360	ft	Soil Bearing Factor		Per §1807.3.2.1 A = $2.34P/(S_1(b/12))$		
d =	FO 4C4	i.e.	Administration Double and Street Control		Eq. 18-1 ½h used in place of h		
u =	59.464	III	Minimum Footing Depth modified for fencing	ОК	$d = (\frac{1}{4}A(1 + (1 + 4.36 \frac{1}{4} (h/12) / A)^{\frac{1}{4}}))12$		
UC =	0.901	-	Unity Check		UC = d / D		
Axial Lo	oad						
D _f =	364.474	lbs	Footing Weight		D _f = V x 150 pcf		
w _f =	463.000	lbs	Fencing, Post & Ice (if applicable) Weight	$w_f = p_i' \text{ or } p_w'$			
D _{max} =	827.474	lbs	Axial Dead Load	$D_{\text{max}} = D_f + W_f$			
A _f =	0.442	ft ²	Footing Area	$A_f = \pi (\frac{1}{2}(b/12))^2$			
S _y =	2000.000	psf	Allowable Vertical Foundation Pressure		Per Geotech or Table 1806.2		
s _y =	1873.018	psf	Maximum Vertical Pressure	OY	$p_a = D_{max} / A_f$		
UC =	0.937	-	Unity Check	ОК	$UC = s_y / S_y$ $UC \le 1.0$ is OK		