Site Location:

Customer:

Site and Geometrical Variables

Basic Wind Speed, V_w = _____ mph

Wind Pressure, $q_w = \underline{\hspace{1cm}}$ psf

Exposure Category _____ Topographical Factor, K_{zt} = _____

Site Elevation, $Z_e =$ _____ ft Elevation Factor, $K_e =$ _____

Height of fence, $h = \underline{\hspace{1cm}}$ ft Gap at bottom of fence, $g = \underline{\hspace{1cm}}$ ft (zero if no gap)

Height of fencing material, s = h - g =_____ ft

Velocity Pressure Exposure Coefficient, K_z = _____

Wind & Axial Loading

Fence Run #____ Length of Fence, B = ____ ft

Post spacing, L = ft

Post Type: Line Posts () Post near end or corner ()

Solidity Ratio, $\varepsilon =$ _____

Inverted Fence Opening Reduction Factor, R_{1w} = _____

Case C Reduction Factor, $R_{2w} =$ Return Corner Reduction Factor, $R_{3w} =$ _____

Force Height Adjustment Factor, F_{hw} = ____ Wind Force Coefficient, C_{fw} = ____

Wind area tributary to the post, $A_w = \varepsilon$ s $L = \underbrace{}_{\varepsilon} \times \underbrace{}_{s} \times \underbrace{}_{L} = \underbrace{}_{A_w} ft^2$

Dead Load of fencing materials, D_m ____ psf

Lateral and Axial Forces for Wind Loading

Minimum wind force to the post, f_{min} = (0.6) 16.0 A_w = 9.6 × ____ = ___ | bs ____ | f_{min}

Calculated Wind Force to the post, $f_w = q_w K_z K_{zt} K_e R_{1w} F_{hw} C_{fw} A_w$

$$f_w = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \text{Ibs}$$

Maximum wind force to the post, $f_w' = maximum value of either <math>f_{min}$ or $f_w = \underline{\qquad}$ lbs $f_{w'}$

The Axial Force supported by the post, $p_w = D_w s L$

$$P_w = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$
 lbs

 $5 \times p_w =$ _____ lbs (used for stability check)

Post Selection

Using the diameter of the desired post size, O.D., and the Fence Height, h, look through the post charts for post types that have F_a values larger than the f_w ' value, and P_a values larger than the p_w value. If the post has an * next to the P_a value, only use it if the P_a value is $\geq 5 \times p_w$ due to stability requirements.

Put in the O.D, post type, weight per foot, D_p and fence height, h and calculate p_w to include the weight of the post. Add any additional weight if needed.

f_w' / F_a is the bending strength ratio for Wind.

pw' / Pa is the axial strength ratio for Wind

If the sum of the bending strength and axial strength ratios for both Wind and Wind & Ice loading are ≤ 1.0, the post is acceptable.

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$				
				p _w =				
Wind								
f _w ' = =					f _w ' + p _w ' =			
F _a =		P _a =			Fa Pa			

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$				
				p _w 1 =				
Wind								
f _w ' =								
F _a =		P _a =			F _a P _a			

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$				
				p _w ¹ =				
Wind								
f _w ' =	=	p _w ' =			f _w ' p _w ' _ =			
F _a =		P _a =			F _a P _a			

Footing Sizing (non-constrained footings)

Design Footing Depth, D = ____ ft

Footing Diameter, b = ft

Lateral Bearing Pressure per foot of depth, S = ____ psf / ft per geotechnical analysis or table 1806.2

Maximum Wind Force, $P = f_w' = \underline{\hspace{1cm}}$ Ibs Post Height, $h = \underline{\hspace{1cm}}$ ft

Modifier for Isolated Posts, M = 2.0

per IBC §1086.3.4

Allowable Lateral Soil Bearing Pressure for non-constrained footings, S₁ = ⅓ D S M

$$S_1 = \frac{1}{3} \times \frac{1}{D} \times \frac{1}{S} \times \frac{2.0}{M} = \frac{1}{S_1} \text{ psf}$$

per IBC §1807.3.2.1

Soil Bearing Factor, $A = 2.34 P / (S_1 b)$

per IBC §1807.3.2.1

$$A = 2.34 \times _{P} \div (_{S_1} \times _{b}) = _{A}$$

Minimum Depth, d = $\frac{1}{2}$ A $\left(1 + \sqrt{1 + \frac{4.36 \frac{1}{2}h}{A}}\right)$ per Eq. 18-1, modified for fencing

$$d = \frac{1}{2} \times \underline{\qquad} \times (1 + \sqrt{1 + (4.36 \times \frac{1}{2} \times \underline{\qquad} \div \underline{\qquad})}) = \underline{\qquad} ft$$

Area of the bottom of the footing, $A_f = \pi (\frac{1}{2}b)^2 = 3.14 \times (\frac{1}{2} \times \frac{1}{2})^2 = \frac{1}{2} ft^2$

Footing Volume, $V = A_f D = \underbrace{}_{A_f} \times \underbrace{}_{D} = \underbrace{}_{V} ft^3$

Weight of footing, $D_f = 150 \text{ V} = 150 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ lbs

(Typical Concrete weight is 150 lbs / ft³)

Axial Dead Load, $D_{max} = D_f + p_w$

$$D_{max} = \underline{\qquad} + \underline{\qquad} = \underline{\qquad} lbs$$

Maximum Vertical Foundation Pressure, $S_y = ____ psf$ per geotechnical analysis or table 1806.2

Maximum Axial Pressure on the soil, $s_y = D_{max} / A_f = ____ ÷ ___ = ____ pst$

 s_y / S_y must be less than 1.0. If not, start over with a larger footing diameter, b