•••		
Cito	Location:	٠
JILE	LUCATION.	,

Customer:

Site and Geometrical Variables

Basic Wind Speed, V_w = _____ mph

Wind Pressure, $q_w = \underline{\hspace{1cm}} psf$

Exposure Category _____ Topographical Factor, K_{zt} = _____

Site Elevation, $Z_e =$ _____ ft Elevation Factor, $K_e =$ _____

Height of fence, h = _____ ft Gap at bottom of fence, g = ____ ft (zero if no gap)

Height of fencing material, $s = h - g = \underline{\hspace{1cm}}$ ft

Velocity Pressure Exposure Coefficient, K_z = _____

Wind & Axial Loading

Fence Run #

Length of Fence, B = ft

Post spacing, L = ft

Solidity Ratio, $\varepsilon =$

Inverted Fence Opening Reduction Factor, $R_{1w} = 1.0$

Force Height Adjustment Factor, F_{hw} = 1.0

Wind Force Coefficient, C_{fw} = _____

Expected Post Diameter or Width, $\mathcal{O}_p =$ in

Top Rail Diameter or Width, $\mathcal{O}_r = \underline{\hspace{1cm}}$ in Mid Rail Diameter or Width, $\mathcal{O}_p = \underline{\hspace{1cm}}$ in

 $(\mathcal{O}_r \& \mathcal{O}_m - \text{set to Zero if not applicable for rails})$

Wind Area of Post,
$$A_p = \mathcal{O}_p / 12 \times h = \underline{\hspace{1cm}} \div 12 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} ft^2$$

($A_p = 0$ for solid / mostly solid fencing) \mathcal{O}_p h A_p

Wind Area of Rails, $A_r = (\emptyset_r / 12) \times 2 \times L + (\emptyset_m / 12) \times L$ ($A_r = 0$ if no rails)

$$A_r = (\underline{\hspace{1cm}} \begin{array}{c} \\ \hline \varnothing_r \end{array} \begin{array}{c} \div \ 12 \times 2 \times \underline{\hspace{1cm}} \\ \hline L \end{array}) + (\underline{\hspace{1cm}} \begin{array}{c} \\ \hline \varnothing_m \end{array} \begin{array}{c} \div \ 12 \times \underline{\hspace{1cm}} \\ \hline L \end{array}) = \underline{\hspace{1cm}} \begin{array}{c} \\ \hline A_r \end{array} ft^2$$

Wind area tributary to the post, $A_w = \varepsilon s L + A_p + A_r = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}} ft^2$

Dead Load of fencing materials, D_m psf

Lateral and Axial Forces for Wind Loading

Minimum wind force to the post, $f_{min} = (0.6) 16.0 A_w = 9.6 \times ___ = ___$ lbs

Calculated Wind Force to the post, $f_w = q_w K_z K_{zt} K_e R_{1w} F_{hw} C_{fw} A_w$

$$f_w = \underbrace{\hspace{1cm} \times \hspace{1cm} \times \hspace{1cm} \times \hspace{1cm} \times \hspace{1cm} \times \hspace{1cm} \times \hspace{1cm} \times 1.0 \times 1.0 \times \underbrace{\hspace{1cm} \times \hspace{1cm} \times \hspace{1cm} \times \hspace{1cm} = \hspace{1cm} }_{\text{lbs}} \hspace{1cm} \text{lbs}}_{\text{dw}}$$

Maximum wind force to the post, f_w' = maximum value of either f_{mim} or f_w = _____ lbs

Axial force supported by the post, $p_a = D_w s L$

$$P_w = \underline{\qquad} \times \underline{\qquad} \times \underline{\qquad} = \underline{\qquad} Ibs$$

 $5 \times p_w =$ _____ lbs (used for stability check)

Post Selection

Using the diameter of the desired post size, O.D., and the Fence Height, h, look through the post charts for post types that have an F_a value larger than the f_w ' value, and a P_a value larger than the p_w value. If the post has an * next to the P_a value, only use it if the P_a value is $\geq 5 \times p_w$ due to stability requirements.

Put in the O.D, post type, weight per foot, D_p and fence height, h and calculate p_w to include the weight of the post. Add any additional weight if needed.

f_w' / F_a is the bending strength ratio for Wind

pw' / Pa is the axial strength ratio for Wind

If the sum of the bending strength and axial strength ratios are ≤ 1.0, the post is acceptable.

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$	
				p _w 1 =	
Wind					
$f_{w'} = $ $p_{w'} = $ $f_{w'}$					
F _a =			Pa =	_	F _a P _a

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$	
				p _w 1 =	
Wind					
f _w ' = = <u>f_w' + p_w' = = </u>					
F _a =			P _a =	_	F _a P _a

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$	
				p _w =	
Wind					
$f_{w'} = $ $f_{w'} \perp p_{w'} = $ $f_{w'} \perp p_{w'} = $					
F _a =			P _a =	_	F _a P _a

Footing Sizing (non-constrained footings)

Design Footing Depth, D = _____ ft

Footing Diameter, b = _ ft

Lateral Bearing Pressure per foot of depth, S = _____ psf / ft __per geotechnical analysis or table 1806.2

Maximum Wind Force, $P = f_w' =$ ____ lbs Post Height, h =____ ft

Modifier for Isolated Posts, M = 2.0

per IBC §1086.3.4

Allowable Lateral Soil Bearing Pressure for non-constrained footings, S₁ = ⅓ D S M

$$S_1 = \frac{1}{3} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times 2.0 = \underline{\hspace{1cm}} \text{psf} \quad \text{per IBC } \S 1807.3.2.1$$

Soil Bearing Factor, $A = 2.34 P/(S_1 b)$ per IBC §1807.3.2.1

$$A = 2.34 \times \underline{\hspace{1cm}} \div (\underline{\hspace{1cm}} \times \underline{\hspace{1cm}}) = \underline{\hspace{1cm}} A$$

Minimum Depth, d = $\frac{1}{2}$ A $\left(1 + \sqrt{1 + \frac{4.36 \frac{1}{2}h}{A}}\right)$ per Eq. 18-1, modified for fencing

$$d = \frac{1}{2} \times \underline{\qquad} \times (1 + \sqrt{1 + (4.36 \times \frac{1}{2} \times \underline{\qquad} \div \underline{\qquad})}) = \underline{\qquad} ft$$

Area of the bottom of the footing, $A_f = \pi \left(\frac{1}{2} b \right)^2 = 3.14 \times \left(\frac{1}{2} \times \underline{} \right)^2 = \underline{} ft^2$

Footing Volume,
$$V = A_f D = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad} \text{ft}^3$$

Weight of footing, $D_f = 150 \text{ V} = 150 \text{ x}$ | Use Typical Concrete weight is 150 lbs / ft³)

Axial Dead Load, $D_{max} = D_f + p_w$

$$D_{max} = \underline{\qquad} + \underline{\qquad} = \underline{\qquad} lbs$$

Maximum Vertical Foundation Pressure, $S_y = ____ psf$ per geotechnical analysis or table 1806.2

Maximum Axial Pressure on the soil, $s_y = D_{max} / A_f = ____ ÷ ___ = ____ psf$

 s_y / S_y must be less than 1.0. If not, start over with a larger footing diameter, b