FenceDesign.com Wind Formula Methodology

The FenceDesign.com Design Guide uses a simplified set of formulas to determine wind forces, but delivers the same end result as the more complicated ASCE 7 methods. The first two tables below show the ASCE formulas. The third table shows the rearranged and simplified method used for fencing in this design guide.

ASCE 7-10 & 7-16 Formulas (K _e is not used in 7-10, so K _e is set to 1.0 in that case)		
$q_h = 0.00256 K_h K_{zt} K_d K_e V^2$	Wind pressure w/ site modifiers at z = h	Eq. 26.10-1 evaluated at top of structure
$q_z = 0.00256 K_z K_{zt} K_d K_e V^2$	Wind pressure w/ site modifiers at z ≈ ½h	Eq. 26.10-1 evaluated at centroid of structure
$F = (0.6) q_h G C_f A_s$	Force to post in Wind loading for $\epsilon > 0.7$	Eq. 29.3-1 modified for ASD Load Cases
$F = (0.7) q_h G C_f A_s$	Force to post in Wind on Ice loading for $\epsilon > 0.7$	
$F = (0.6) q_z G C_f A_f$	Force to post in Wind loading for $\epsilon \le 0.7$	Eq. 29.4-1 modified for ASD Load Cases
$F = (0.7) q_z G C_f A_f$	Force to post in Wind on Ice loading for $\epsilon \le 0.7$	

ASCE 7-22 Formulas (K _d moves from q to F - no net effect)			
$q_h = 0.00256 K_h K_{zt} K_e V^2$	Wind pressure w/ site modifiers	Eq. 26.10-1 evaluated at top of structure	
$q_z = 0.00256 K_z K_{zt} K_e V^2$	Wind pressure w/ site modifiers	Eq. 26.10-1 evaluated at centroid of structure	
$F = 0.6 q_h K_d G C_f A_s$	Force to post in Wind loading for $\epsilon > 0.7$	Eq. 29.3-1 modified for ASD Load Cases	
$F = 0.7 q_h K_d G C_f A_s$	Force to post in Wind on Ice loading for $\epsilon > 0.7$		
$F = 0.6 q_z K_d G C_f A_f$	Force to post in Wind loading for $\epsilon \le 0.7$	Eq. 29.4-1 modified for ASD Load Cases	
$F = 0.7 q_z K_d G C_f A_f$	Force to post in Wind on Ice loading for $\epsilon \le 0.7$		

FenceDesign.com Design Procedure - Formulas rearranged to separate wind pressure from site specific modifiers			
$q_w = (0.6) 0.00256 K_d G V_w^2$	ASD Wind pressure w/o site modifiers	Rearranging formulas allows for tabular wind	
$q_i = (0.7) 0.00256 K_d G V_i^2$	ASD Wind on Ice pressure w/o site modifiers	pressure values and simplification of formulas	
$F_w = q_w K_z K_{zt} K_e R_{1w} F_{hw} C_{fw} A_w$	Forces to mid-height of post based on site specific modifiers and fence design variables		
$F_i = q_i K_z K_{zt} K_e R_{1i} F_{hi} C_{fi} A_i$			

Wind Directionality Factor, $K_d = 0.85$ per Table 26.6-1 for solid freestanding walls and single plane open frames

Gust Effect Factor, G = 0.85 per $\S 26.9$ (7-10) or $\S 26.11$ (7-16 & 7-22) for rigid structures ($n_a > 1.0$ Hz)

Velocity Pressure Exposure Coefficients, K, evaluated at ½ h, and Kh evaluated at h

The FenceDesign.com Design Guide uses only K_z , but determines the value at ½ h for open fencing and h for solid fencing Open Frame Area, $A_f = \epsilon$ s L

Solid / Mostly Solid Wall Area, A_s = s L The fence opening reduction factor is used in ASCE to reduce the C_f value

Wind Force Coefficient, C_f C_{fw} for Wind loading C_{fi} for Wind on Ice loading Inverted Fence Opening Reduction Factor, R_1 R_{1w} for Wind loading R_{1i} for Wind on Ice loading Force Height Adjustment Factor, F_h F_{hw} for Wind loading F_{hi} for Wind on Ice loading.

 A_w = Net Area for Wind Loading A_i = Net Area for Wind on Ice Loading