| C:T- | | | | |------|-----|-------|---| | Site | LUC | llion | ı | **Customer:** ### **Site and Geometrical Variables** Basic Wind Speed, $V_w = \underline{\hspace{1cm}}$ mph Nominal Ice Thickness, $t = \underline{\hspace{1cm}}$ in Gust / Concurrent Wind Speed for Ice Loading, V_i = _____ mph Wind Pressure, $q_w = \underline{\hspace{1cm}}$ psf Wind on Ice Pressure, $q_i = \underline{\hspace{1cm}}$ psf Exposure Category _____ Topographical Factor, K_{zt} = _____ Site Elevation, $Z_e =$ _____ ft Elevation Factor, $K_e =$ _____ Height of fence, $h = \underline{\hspace{1cm}}$ ft Gap at bottom of fence, $g = \underline{\hspace{1cm}}$ ft (zero if no gap) Height of fencing material, s = h - g = ____ ft Velocity Pressure Exposure Coefficient, K_z = _____ ### Wind & Axial Loading Fence Run # Length of Fence, B = ft Post spacing, L = ft Post Type: Line Posts () Post near end or corner () Solidity Ratio, $\varepsilon =$ _____ Inverted Fence Opening Reduction Factor, R_{1w} = _____ Case C Reduction Factor, $R_{2w} =$ Return Corner Reduction Factor, R_{3w} = _____ Force Height Adjustment Factor, F_{hw} = _____ Wind Force Coefficient, C_{fw} = ____ Expected Post Diameter or Width, $\mathcal{O}_{p} =$ in (Set to Zero for solid / mostly solid fencing) Top Rail Diameter or Width, $\mathcal{O}_r = \underline{\hspace{1cm}}$ in Mid Rail Diameter or Width, $\mathcal{O}_p = \underline{\hspace{1cm}}$ in $(\mathcal{O}_r \& \mathcal{O}_m - \text{set to Zero if not applicable for rails or for solid / mostly solid fencing)}$ Wind Area of Post, $A_p = \mathcal{O}_p / 12 \times h = \underline{\hspace{1cm}} \div 12 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} ft^2$ ($A_p = 0$ for solid / mostly solid fencing) \mathcal{O}_p h A_p Wind Area of Rails, $A_r = (\emptyset_r / 12) \times 2 \times L + (\emptyset_m / 12) \times L$ ($A_r = 0$ for solid / mostly solid fencing) $A_r = (\underline{\hspace{1cm}} \div 12 \times 2 \times \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \oplus 12 \times \underline{\hspace{1cm}}) = \underline{\hspace{1cm}} ft^2$ Wind area tributary to the post, $A_w = \varepsilon s L + A_p + A_r = \underline{\qquad} \times \underline{\qquad} \times \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} = \underline{\qquad} ft^2$ Dead Load of fencing materials, D_m psf # **Lateral and Axial Forces for Wind Loading** Wind Force to the post, $f_w = q_w K_z K_{zt} K_e R_{1w} F_{hw} C_{fw} A_w$ $$f_w = \underbrace{\hspace{1cm} \times \hspace{1cm} = \hspace{1cm} \hspace{1cm} Ibs}_{Ibs}$$ The Axial Force supported by the post, $p_a = D_w s L$ $$P_w = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} Ibs$$ $5 \times p_w =$ _____ lbs (used for stability check) ## Wind on Ice Loading Fence Run #____ ft Post spacing, L = ____ ft Post Type: Line Posts() Post near end or corner() ### Wind on Ice Force Variables Iced Solidity Ratio, $\epsilon' =$ Inverted Fence Opening Reduction Factor, $R_{1i} =$ Case C Reduction Factor, R_{2i} = _____ Return Corner Reduction Factor, R_{3i} = _____ Force Height Adjustment Factor, F_{hi} = _____ Wind Force Coefficient, C_{fi} = _____ Dead Load of Ice, $D_i = psf$ Wind area tributary to the post in the iced condition, $A_i = \varepsilon'$ s L $$A_i = \underline{} \times \underline{} \times \underline{} \times \underline{} = \underline{} ft^2$$ Wind on Ice Force to the post, $f_i = q_i K_z K_{zt} K_e R_{1i} F_{hi} C_{fi} A_i$ $$F_i = \underbrace{\hspace{1cm} \times \hspace{1cm} = \hspace{1cm} Ibs}_{Ibs}$$ Axial Force supported by the post, $p_i = (D_w + D_i) s L$ $$p_i = (\underline{\hspace{1cm}} + \underline{\hspace{1cm}}) \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} Ibs$$ $5 \times p_i =$ _____ lbs (used for stability check) #### **Post Selection** Using the diameter of the desired post size, O.D., and the Fence Height, h, look through the post charts for post types that have F_a values larger than the f_w & f_i values, and P_a values larger than the p_w & p_i values. If the post has an * next to the P_a value, only use it if the P_a value is $\geq 5 \times p_i$ due to stability requirements. Put in the O.D, post type, weight per foot, D_p and fence height, h and calculate p_w ' and p_i ' to include the weight of the post. Add any additional weight if needed. f_w / F_a is the bending strength ratio for Wind. p_w / P_a is the axial strength ratio for Wind. f_i / F_a is the bending strength ratio for Wind & Ice. p_i / P_a is the axial strength ratio for Wind & Ice. If the sum of the bending strength and axial strength ratios for both Wind and Wind & Ice loading are ≤ 1.0, the post is acceptable. | O.D. | Post Type | D _p (lb/f) | h (ft) | $p_w' = p_w + (D_p \times h)$ | $p_i' = p_i + (D_p \times h)$ | | |------------------|-----------|-----------------------|--------------------|-------------------------------|-----------------------------------|--| | | | | | p _w ' = | p _i ' = | | | Wind | | | | | | | | f _w = | _ | | p _w ' = | | f _w p _w ' _ | | | F _a = | | | $P_a =$ | | F_a P_a | | | Wind & Ice | | | | | | | | f _i = | _ | | p _i ' = | _ | f _i p' _ | | | $F_a =$ | | | $P_a =$ | | F_a P_a | | | O.D. | Post Type | D _p (lb/f) | h (ft) | $p_w' = p_w + (D_p \times h)$ | $p_i' = p_i + (D_p \times h)$ | | |------------------|-----------|-----------------------|--------------------|-------------------------------|-------------------------------------|--| | | | | | p _w ' = | p _i ' = | | | Wind | | | | | | | | f _w = | _ | | p _w ' = | _ _ | f _w p _w ' | | | $F_a =$ | | | $P_a =$ | <u> </u> | F_a P_a | | | Wind & Ice | | | | | | | | f _i = | _ | | p _i ' = | _ | f _i p _i ' | | | $F_a =$ | – | | $P_a =$ | _ | $\overline{F_a} + \overline{P_a} =$ | | ### Footing Sizing (non-constrained footings) Design Footing Depth, D = ____ ft Footing Diameter, b = ft Lateral Bearing Pressure per foot of depth, S = ____ psf / ft per geotechnical analysis or table 1806.2 Maximum Wind Force, $P = maximum value of f_w or f_i = ____ lbs$ Post Height, h = ____ ft Modifier for Isolated Posts, M = 2.0 per IBC §1086.3.4 Allowable Lateral Soil Bearing Pressure for non-constrained footings, S₁ = ⅓ D S M $$S_1 = \frac{1}{3} \times \underline{\qquad} \times \underline{\qquad} \times 2.0 = \underline{\qquad} \text{psf} \qquad \text{per IBC } \S 1807.3.2.1$$ Soil Bearing Factor, $A = 2.34 P/(S_1 b)$ per IBC §1807.3.2.1 $$A = 2.34 \times \underline{\hspace{1cm}} \div (\underline{\hspace{1cm}} S_1 \times \underline{\hspace{1cm}}) = \underline{\hspace{1cm}} A$$ Minimum Depth, $d = \frac{1}{2} A \left(1 + \sqrt{1 + \frac{4.36 \frac{1}{2} h}{A}}\right)$ per Eq. 18-1, modified for fencing $$d = \frac{1}{2} \times \underline{\qquad} \times (1 + \sqrt{1 + (4.36 \times \frac{1}{2} \times \underline{\qquad} \div \underline{\qquad})}) = \underline{\qquad} ft$$ Area of the bottom of the footing, $A_f = \pi (\frac{1}{2}b)^2 = 3.14 \times (\frac{1}{2} \times \frac{1}{2}b)^2 = \frac{1}{2}$ ft² Footing Volume, $$V = A_f D = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad} ft^3$$ Weight of footing, $D_f = 150 \text{ V} = 150 \text{ x}$ (Typical Concrete weight is 150 lbs / ft³) Axial Dead Load, $D_{max} = D_f + p_i$ for fencing plus ice loading. $D_{max} = D_f + p_w$ if there is no ice loading $$D_{max} = \underline{\qquad} + \underline{\qquad} = \underline{\qquad} lbs$$ Maximum Vertical Foundation Pressure, $S_y = \underline{\hspace{1cm}}$ psf per geotechnical analysis or table 1806.2 Maximum Axial Pressure on the soil, $s_y = D_{max} / A_f = \underline{\qquad} \div \underline{\qquad} = \underline{\qquad} pst$ s_y / S_y must be less than 1.0. If not, start over with a larger footing diameter, b