C:T-			
Site	LUC	llion	ı

Customer:

Site and Geometrical Variables

Basic Wind Speed, $V_w = \underline{\hspace{1cm}}$ mph Nominal Ice Thickness, $t = \underline{\hspace{1cm}}$ in

Gust / Concurrent Wind Speed for Ice Loading, V_i = _____ mph

Wind Pressure, $q_w = \underline{\hspace{1cm}}$ psf Wind on Ice Pressure, $q_i = \underline{\hspace{1cm}}$ psf

Exposure Category _____ Topographical Factor, K_{zt} = _____

Site Elevation, $Z_e =$ _____ ft Elevation Factor, $K_e =$ _____

Height of fence, $h = \underline{\hspace{1cm}}$ ft Gap at bottom of fence, $g = \underline{\hspace{1cm}}$ ft (zero if no gap)

Height of fencing material, s = h - g = ____ ft

Velocity Pressure Exposure Coefficient, K_z = _____

Wind & Axial Loading

Fence Run #

Length of Fence, B = ft

Post spacing, L = ft

Post Type: Line Posts () Post near end or corner ()

Solidity Ratio, $\varepsilon =$ _____

Inverted Fence Opening Reduction Factor, R_{1w} = _____

Case C Reduction Factor, $R_{2w} =$

Return Corner Reduction Factor, R_{3w} = _____

Force Height Adjustment Factor, F_{hw} = _____ Wind Force Coefficient, C_{fw} = ____

Expected Post Diameter or Width, $\mathcal{O}_{p} =$ in (Set to Zero for solid / mostly solid fencing)

Top Rail Diameter or Width, $\mathcal{O}_r = \underline{\hspace{1cm}}$ in Mid Rail Diameter or Width, $\mathcal{O}_p = \underline{\hspace{1cm}}$ in

 $(\mathcal{O}_r \& \mathcal{O}_m - \text{set to Zero if not applicable for rails or for solid / mostly solid fencing)}$

Wind Area of Post, $A_p = \mathcal{O}_p / 12 \times h = \underline{\hspace{1cm}} \div 12 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} ft^2$ ($A_p = 0$ for solid / mostly solid fencing) \mathcal{O}_p h A_p

Wind Area of Rails, $A_r = (\emptyset_r / 12) \times 2 \times L + (\emptyset_m / 12) \times L$ ($A_r = 0$ for solid / mostly solid fencing)

 $A_r = (\underline{\hspace{1cm}} \div 12 \times 2 \times \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \oplus 12 \times \underline{\hspace{1cm}}) = \underline{\hspace{1cm}} ft^2$

Wind area tributary to the post, $A_w = \varepsilon s L + A_p + A_r = \underline{\qquad} \times \underline{\qquad} \times \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} = \underline{\qquad} ft^2$

Dead Load of fencing materials, D_m psf

Lateral and Axial Forces for Wind Loading

Wind Force to the post, $f_w = q_w K_z K_{zt} K_e R_{1w} F_{hw} C_{fw} A_w$

$$f_w = \underbrace{\hspace{1cm} \times \hspace{1cm} = \hspace{1cm} \hspace{1cm} Ibs}_{Ibs}$$

The Axial Force supported by the post, $p_a = D_w s L$

$$P_w = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} Ibs$$

 $5 \times p_w =$ _____ lbs (used for stability check)

Wind on Ice Loading

Fence Run #____ ft

Post spacing, L = ____ ft

Post Type: Line Posts()

Post near end or corner()

Wind on Ice Force Variables

Iced Solidity Ratio, $\epsilon' =$ Inverted Fence Opening Reduction Factor, $R_{1i} =$

Case C Reduction Factor, R_{2i} = _____

Return Corner Reduction Factor, R_{3i} = _____

Force Height Adjustment Factor, F_{hi} = _____

Wind Force Coefficient, C_{fi} = _____

Dead Load of Ice, $D_i = psf$

Wind area tributary to the post in the iced condition, $A_i = \varepsilon'$ s L

$$A_i = \underline{} \times \underline{} \times \underline{} \times \underline{} = \underline{} ft^2$$

Wind on Ice Force to the post, $f_i = q_i K_z K_{zt} K_e R_{1i} F_{hi} C_{fi} A_i$

$$F_i = \underbrace{\hspace{1cm} \times \hspace{1cm} = \hspace{1cm} Ibs}_{Ibs}$$

Axial Force supported by the post, $p_i = (D_w + D_i) s L$

$$p_i = (\underline{\hspace{1cm}} + \underline{\hspace{1cm}}) \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} Ibs$$

 $5 \times p_i =$ _____ lbs (used for stability check)

Post Selection

Using the diameter of the desired post size, O.D., and the Fence Height, h, look through the post charts for post types that have F_a values larger than the f_w & f_i values, and P_a values larger than the p_w & p_i values. If the post has an * next to the P_a value, only use it if the P_a value is $\geq 5 \times p_i$ due to stability requirements.

Put in the O.D, post type, weight per foot, D_p and fence height, h and calculate p_w ' and p_i ' to include the weight of the post. Add any additional weight if needed.

 f_w / F_a is the bending strength ratio for Wind. p_w / P_a is the axial strength ratio for Wind.

 f_i / F_a is the bending strength ratio for Wind & Ice. p_i / P_a is the axial strength ratio for Wind & Ice.

If the sum of the bending strength and axial strength ratios for both Wind and Wind & Ice loading are ≤ 1.0, the post is acceptable.

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$	$p_i' = p_i + (D_p \times h)$	
				p _w ' =	p _i ' =	
Wind						
f _w =	_		p _w ' =		f _w p _w ' _	
F _a =			$P_a =$		F_a P_a	
Wind & Ice						
f _i =	_		p _i ' =	_	f _i p' _	
$F_a =$			$P_a =$		F_a P_a	

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$	$p_i' = p_i + (D_p \times h)$	
				p _w ' =	p _i ' =	
Wind						
f _w =	_		p _w ' =	_ _	f _w p _w '	
$F_a =$			$P_a =$	<u> </u>	F_a P_a	
Wind & Ice						
f _i =	_		p _i ' =	_	f _i p _i '	
$F_a =$	–		$P_a =$	_	$\overline{F_a} + \overline{P_a} =$	

Footing Sizing (non-constrained footings)

Design Footing Depth, D = ____ ft

Footing Diameter, b = ft

Lateral Bearing Pressure per foot of depth, S = ____ psf / ft per geotechnical analysis or table 1806.2

Maximum Wind Force, $P = maximum value of f_w or f_i = ____ lbs$

Post Height, h = ____ ft

Modifier for Isolated Posts, M = 2.0

per IBC §1086.3.4

Allowable Lateral Soil Bearing Pressure for non-constrained footings, S₁ = ⅓ D S M

$$S_1 = \frac{1}{3} \times \underline{\qquad} \times \underline{\qquad} \times 2.0 = \underline{\qquad} \text{psf} \qquad \text{per IBC } \S 1807.3.2.1$$

Soil Bearing Factor, $A = 2.34 P/(S_1 b)$ per IBC §1807.3.2.1

$$A = 2.34 \times \underline{\hspace{1cm}} \div (\underline{\hspace{1cm}} S_1 \times \underline{\hspace{1cm}}) = \underline{\hspace{1cm}} A$$

Minimum Depth, $d = \frac{1}{2} A \left(1 + \sqrt{1 + \frac{4.36 \frac{1}{2} h}{A}}\right)$ per Eq. 18-1, modified for fencing

$$d = \frac{1}{2} \times \underline{\qquad} \times (1 + \sqrt{1 + (4.36 \times \frac{1}{2} \times \underline{\qquad} \div \underline{\qquad})}) = \underline{\qquad} ft$$

Area of the bottom of the footing, $A_f = \pi (\frac{1}{2}b)^2 = 3.14 \times (\frac{1}{2} \times \frac{1}{2}b)^2 = \frac{1}{2}$ ft²

Footing Volume,
$$V = A_f D = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad} ft^3$$

Weight of footing, $D_f = 150 \text{ V} = 150 \text{ x}$ (Typical Concrete weight is 150 lbs / ft³)

Axial Dead Load, $D_{max} = D_f + p_i$ for fencing plus ice loading. $D_{max} = D_f + p_w$ if there is no ice loading

$$D_{max} = \underline{\qquad} + \underline{\qquad} = \underline{\qquad} lbs$$

Maximum Vertical Foundation Pressure, $S_y = \underline{\hspace{1cm}}$ psf per geotechnical analysis or table 1806.2

Maximum Axial Pressure on the soil, $s_y = D_{max} / A_f = \underline{\qquad} \div \underline{\qquad} = \underline{\qquad} pst$

s_y / S_y must be less than 1.0. If not, start over with a larger footing diameter, b