Worksheet – Mostly Solid / Solid Fencing – Wind Loading Only

Site Location:

Customer:					
Site and Geometrical Variables					
IBC ASCE 7	Risk Category	Frost Depth ft			
Basic Wind Speed, V _w = mph					
Wind Pressure, q _w = psf					
Exposure Category	Topographical Factor, K _{zt} =				
Site Elevation, Z _e = ft	Elevation Factor, K _e =				
Height of fence, h = ft	Gap at bottom of fence, g =	ft(zero if no gap)			
Height of fencing material, s = h - g =	ft				
Velocity Pressure Exposure Coefficient, K _z =					

Wind & Axial Loading

Fence Run #____ Length of Fence, B = ____ ft

Post spacing, L = ft

Post Type: Line Posts () Post near end or corner ()

Solidity Ratio, $\varepsilon =$

Inverted Fence Opening Reduction Factor, R_{1w} = _____

Case C Reduction Factor, $R_{2w} =$ Return Corner Reduction Factor, $R_{3w} =$ _____

Force Height Adjustment Factor, F_{hw} = _____ Wind Force Coefficient, C_{fw} = ____

Wind area tributary to the post, $A_w = \varepsilon$ s $L = \underbrace{}_{\varepsilon} \times \underbrace{}_{s} \times \underbrace{}_{L} = \underbrace{}_{A_w} ft^2$

Dead Load of fencing materials, D_m ____ psf

Lateral and Axial Forces for Wind Loading

Wind Force to the post, $f_w = q_w K_z K_{zt} K_e R_{1w} F_{hw} C_{fw} A_w$

$$f_w = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$
 Ibs

The Axial Force supported by the post, $p_w = D_w s L$

$$P_w = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} Ibs$$

 $5 \times p_w =$ _____ lbs (used for stability check)

Post Selection

Using the diameter of the desired post size, O.D., and the Fence Height, h, look through the post charts for post types that have F_a values larger than the f_w value, and P_a values larger than the p_w value. If the post has an * next to the P_a value, only use it if the P_a value is $\geq 5 \times p_w$ due to stability requirements.

Put in the O.D, post type, weight per foot, D_p and fence height, h and calculate p_w to include the weight of the post. Add any additional weight if needed.

f_w / F_a is the bending strength ratio for Wind.

pw' / Pa is the axial strength ratio for Wind

If the sum of the bending strength and axial strength ratios for both Wind and Wind & Ice loading are ≤ 1.0, the post is acceptable.

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$	
				p _w ' =	
Wind					
$f_{w} = $ $p_{w'} = $ $= $ $f_{w} + p_{w'} = $					
F _a =			$P_a =$		$F_a = P_a$

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$	
				p _w ' =	
Wind					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					

O.D.	Post Type	D _p (lb/f)	h (ft)	$p_w' = p_w + (D_p \times h)$	-
				p _w ' =	
Wind					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					

Footing Sizing (non-constrained footings)

Design Footing Depth, D = ft

Footing Diameter, b = ft

Lateral Bearing Pressure per foot of depth, S = ____ psf / ft per geotechnical analysis or table 1806.2

Maximum Wind Force, $P = f_w = ____ lbs$

Post Height, h = ft

Modifier for Isolated Posts, M = 2.0

per IBC §1086.3.4

Allowable Lateral Soil Bearing Pressure for non-constrained footings, S₁ = 1/3 D S M

$$S_1 = \frac{1}{3} \times \underline{\qquad} \times \underline{\qquad} \times 2.0 = \underline{\qquad} \text{psf} \qquad \text{per IBC } \S 1807.3.2.1$$

Soil Bearing Factor, $A = 2.34 P/(S_1 b)$

per IBC §1807.3.2.1

$$A = 2.34 \times _{P} \div (_{S_1} \times _{b}) = _{A}$$

Minimum Depth, d = $\frac{1}{2}$ A $\left(1 + \sqrt{1 + \frac{4.36 \frac{1}{2}h}{A}}\right)$ per Eq. 18-1, modified for fencing

$$d = \frac{1}{2} \times \underline{A} \times (1 + \sqrt{1 + (4.36 \times \frac{1}{2} \times \underline{A})}) = \underline{d}$$
 ft

Area of the bottom of the footing, $A_f = \pi (\frac{1}{2}b)^2 = 3.14 \times (\frac{1}{2} \times \frac{1}{2})^2 = \frac{1}{2}$ ft²

Footing Volume, $V = A_f D = A_f = A_f D = V$

Weight of footing, $D_f = 150 \text{ V} = 150 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ lbs

(Typical Concrete weight is 150 lbs / ft³)

Axial Dead Load, $D_{max} = D_f + p_w$

$$D_{max} = \underline{\qquad} + \underline{\qquad} = \underline{\qquad} lbs$$

Maximum Vertical Foundation Pressure, $S_y = \underline{\hspace{1cm}}$ psf per geotechnical analysis or table 1806.2

Maximum Axial Pressure on the soil, $s_y = D_{max} / A_f = \underline{\qquad} \div \underline{\qquad} = \underline{\qquad} psf$

Actual to Allowable Soil Strength Ratio, s_y / $S_y = ___ \div ___ = __ \le 1.0$ is OK

 $s_{\text{y}}\,/\,S_{\text{y}}$ must be less than 1.0. If not, start over with a larger footing diameter, b