Worksheet – Open Fencing – Wind Loading | Site Location: | | | | | | |---|------------------------------------|---------------------|--|--|--| | Customer: Site and Geometrical Variables | | | | | | | IBC ASCE 7 | Risk Category | Frost Depth ft | | | | | Basic Wind Speed, V _w = mph | | | | | | | Wind Pressure, q _w = psf | | | | | | | Exposure Category | Topographical Factor, $K_{zt} = $ | | | | | | Site Elevation, Z _e =ft | Elevation Factor, K _e = | | | | | | Height of fence, h =ft | Gap at bottom of fence, g = | ft (zero if no gap) | | | | | Height of fencing material, s = h - g = | ft | | | | | | Velocity Pressure Exposure Coefficien | nt, K _z = | | | | | ## Wind & Axial Loading Fence Run # Length of Fence, B = ft Post spacing, L = ft Solidity Ratio, $\varepsilon =$ _____ Inverted Fence Opening Reduction Factor, $R_{1w} = 1.0$ Force Height Adjustment Factor, $F_{hw} = 1.0$ Wind Force Coefficient, C_{fw} = _____ Expected Post Diameter or Width, $\mathcal{O}_p =$ in Top Rail Diameter or Width, $\mathcal{O}_r = \underline{\hspace{1cm}}$ in Mid Rail Diameter or Width, $\mathcal{O}_p = \underline{\hspace{1cm}}$ in $(\mathcal{O}_r \& \mathcal{O}_m - \text{set to Zero if not applicable for rails})$ Wind Area of Post, $$A_p = \mathcal{O}_p / 12 \times h = \underline{\hspace{1cm}} \div 12 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} ft^2$$ (A_p = 0 for solid / mostly solid fencing) \mathcal{O}_p h A_p Wind Area of Rails, $A_r = (\emptyset_r / 12) \times 2 \times L + (\emptyset_m / 12) \times L$ ($A_r = 0$ if no rails) $$A_r = (\underline{\hspace{1cm}} \begin{array}{c} \\ \hline \varnothing_r \end{array} \begin{array}{c} \div \ 12 \times 2 \times \underline{\hspace{1cm}} \\ \hline L \end{array}) + (\underline{\hspace{1cm}} \begin{array}{c} \\ \hline \varnothing_m \end{array} \begin{array}{c} \div \ 12 \times \underline{\hspace{1cm}} \\ \hline L \end{array}) = \underline{\hspace{1cm}} \begin{array}{c} \\ \hline A_r \end{array} ft^2$$ Wind area tributary to the post, $A_w = \epsilon s L + A_p + A_r = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} ft^2$ Dead Load of fencing materials, D_m ____ psf ## **Lateral and Axial Forces for Wind Loading** Wind Force to the post, $f_w = q_w K_z K_{zt} K_e R_{1w} F_{hw} C_{fw} A_w$ $$f_w = \underline{\hspace{1cm}} \times 1.0 \times 1.0 \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \underline{\hspace{1cm}} \text{lbs}$$ The Axial Force supported by the post, $p_a = D_w s L$ $$P_w = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} Ibs$$ $5 \times p_w =$ _____ lbs (used for stability check) #### **Post Selection** Using the diameter of the desired post size, O.D., and the Fence Height, h, look through the post charts for post types that have an F_a value larger than the f_w value, and a P_a value larger than the p_w value. If the post has an * next to the P_a value, only use it if the P_a value is $\geq 5 \times p_w$ due to stability requirements. Put in the O.D, post type, weight per foot, D_p and fence height, h and calculate p_w to include the weight of the post. Add any additional weight if needed. fw / Fa is the bending strength ratio for Wind pw' / Pa is the axial strength ratio for Wind If the sum of the bending strength and axial strength ratios are ≤ 1.0, the post is acceptable. | O.D. | Post Type | D _p (lb/f) | h (ft) | $p_w' = p_w + (D_p \times h)$ | | |--|-----------|-----------------------|------------------|-------------------------------|-------------------------------| | | | | | p _w ' = | | | Wind | | | | | | | f _w = f _w _ p _w ' | | | | | | | F _a = | - | | P _a = | | F _a P _a | | O.D. | Post Type | D _p (lb/f) | h (ft) | $p_w' = p_w + (D_p \times h)$ | | |--|-----------|-----------------------|---------|-------------------------------|-------------| | | | | | p _w ' = | | | Wind | | | | | | | f _w = f _w p _w ' | | | | | | | F _a = | _ | | $P_a =$ | _ | F_a P_a | | O.D. | Post Type | D _p (lb/f) | h (ft) | $p_w' = p_w + (D_p \times h)$ | | |--|-----------|-----------------------|---------|-------------------------------|-----------| | | | | | p _w ' = | | | Wind | | | | | | | f _w = = = f _w +pw' = | | | | | | | $F_a =$ | | | $P_a =$ | | $F_a P_a$ | ### **Footing Sizing (non-constrained footings)** Design Footing Depth, D = _____ ft Footing Diameter, b = ft Lateral Bearing Pressure per foot of depth, S = _____ psf / ft __per geotechnical analysis or table 1806.2 Maximum Wind Force, $P = f_W =$ ____ lbs Post Height, h =____ ft Modifier for Isolated Posts, M = 2.0 per IBC §1086.3.4 Allowable Lateral Soil Bearing Pressure for non-constrained footings, S₁ = ⅓ D S M $$S_1 = \frac{1}{3} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times 2.0 = \underline{\hspace{1cm}} \text{psf} \quad \text{per IBC } \S 1807.3.2.1$$ Soil Bearing Factor, $A = 2.34 P/(S_1 b)$ per IBC §1807.3.2.1 $$A = 2.34 \times _{P} \div (_{S_1} \times _{b}) = _{A}$$ Minimum Depth, $d = \frac{1}{2} A \left(1 + \sqrt{1 + \frac{4.36 \frac{1}{2} h}{A}}\right)$ per Eq. 18-1, modified for fencing $$d = \frac{1}{2} \times A \times (1 + \sqrt{1 + (4.36 \times \frac{1}{2} \times A)}) = d$$ ft Area of the bottom of the footing, $A_f = \pi (\frac{1}{2} b)^2 = 3.14 \times (\frac{1}{2} \times \underline{\hspace{1cm}})^2 = \underline{\hspace{1cm}}_{\Delta_f} ft^2$ Footing Volume, $$V = A_f D = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad} ft^3$$ Weight of footing, $D_f = 150 \text{ V} = 150 \text{ x}$ | Use Typical Concrete weight is 150 lbs / ft³) Axial Dead Load, $D_{max} = D_f + p_w$ $$D_{max} = \underline{\qquad} + \underline{\qquad} = \underline{\qquad} lbs$$ Maximum Vertical Foundation Pressure, $S_y = ____ psf$ per geotechnical analysis or table 1806.2 Maximum Axial Pressure on the soil, $s_y = D_{max} / A_f = \underline{\qquad} \div \underline{\qquad} = \underline{\qquad} psf$ s_y / S_y must be less than 1.0. If not, start over with a larger footing diameter, b